A technique of electron acceleration in the cone shaped stationary laser field is proposed. An electron acceleration in this laser is studied, which shows that there is no electron bunching but there exists electron c...A technique of electron acceleration in the cone shaped stationary laser field is proposed. An electron acceleration in this laser is studied, which shows that there is no electron bunching but there exists electron capture in this laser field.展开更多
The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the las...The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.展开更多
文摘A technique of electron acceleration in the cone shaped stationary laser field is proposed. An electron acceleration in this laser is studied, which shows that there is no electron bunching but there exists electron capture in this laser field.
文摘The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.