The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status...The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.展开更多
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation...Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of topsoil SOC density and CSP of 21 soil groups across Hebei Province, China, using data collected during the second national soil survey in the 1980 s and during the recent soil inventory in 2010. The CSP can be estimated by the method that the saturated SOC content subtracts the actual SOC associated with clay and silt. Overall, the SOC density and CSP of most soil groups increased from the 1980 s to 2010 and varied between different soil groups. Among all soil groups, Haplic phaeozems had the highest SOC density and Endogleyic solonchaks had the largest CSP. Areas of soil groups with the highest SOC density(90 to 120 t C ha^(–1)) and carbon sequestration(120 to 160 t C ha^(–1)) also increased over time. With regard to spatial distribution, the north of the province had higher SOC density but lower CSP than the south. With respect to land-use type, cultivated soils had lower SOC density but higher CSP than uncultivated soils. In addition, SOC density and CSP were influenced by soil physicochemical properties, climate and terrain and were most strongly correlated with soil humic acid concentration. The results suggest that soil groups(uncultivated soils) of higher SOC density have greater risk of carbon dioxide emission and that management should be aimed at maximizing carbon sequestration in soil groups(cultivated soils) with greater CSP. Furthermore, soils should be managed according to their spatial distributions of SOC density and carbon sequestration potential under different soil groups.展开更多
The levels and distribution of mercury (Hg) species, including total mercury (THg) and methylmercury (MeHg) in the topsoil and dust collected from twenty sampling stations located in different land function area...The levels and distribution of mercury (Hg) species, including total mercury (THg) and methylmercury (MeHg) in the topsoil and dust collected from twenty sampling stations located in different land function areas of Xiamen, China, were investigated. The THg concentrations in topsoil ranged from 0.071 to 1.2 mg/kg, and in dust ranged from of 0.034 to 1.4 mg/kg. For stations where the THg of dust was less than 0.31 mg/kg, THg concentrations in the topsoil were significantly correlated to those in the corresponding dust (r = 0.597, n = 16, P = 0.014). The MeHg concentrations in topsoil were varied between 0.14 and 5.7 μg/kg. The ratios of MeHg/THg in the topsoil ranged from 0.069% to 0.74%. The range of MeHg concentration in the dust were 0.092-2.3 μg/kg. The ratios of MeHg/THg in the dust were at the same level as those in the topsoil. The MeHg concentrations in both topsoil and dust were linked to corresponding THg concentrations and soil organic matter. Neither THg nor MeHg concentration in the topsoil and dust was obviously linked to the land function.展开更多
Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differ...Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil > alluvial sandy paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon(R2=0.62) and clay content(R2=0.67) in the tested paddy soils. Positive correlation was found between apparent K d value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil>yellow clayey paddy soil>reddish yellow paddy soil>alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%—4.2% of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil > reddish yellow paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.展开更多
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investiga...Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.展开更多
Urban topsoil is the most frequent interface between human society and natural environment.The accumulation of heavy metals in the urban topsoil has a direct effect on residents'life and health.The geochemical bas...Urban topsoil is the most frequent interface between human society and natural environment.The accumulation of heavy metals in the urban topsoil has a direct effect on residents'life and health.The geochemical baseline of heavy metals is an objective description of the general level of heavy metals in the urban topsoil.Meanwhile,the determination of geochemical baseline is necessary for regional environmental management,especially in coal cities prone to heavy metal pollution.Heavy metal pollution has become an environmental problem in Fuxin City,China for a long time.To establish the geochemical baseline of heavy metals in the topsoil of Fuxin City and to evaluate the ecological risk of the topsoil,we collected 75 topsoil samples(0–20 cm)and analyzed the concentrations of Cu,Ni,Zn,Pb,Cr,Cd,Hg and As through X-ray fluorescence spectrometry,atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry.We determined the geochemical baseline of heavy metals in the topsoil of Fuxin City by using iteration removal,box-whisker plot,cumulative frequency curve and reference metal normalization;evaluated the contamination risk and ecological risk of the topsoil by using the baseline factor index,Nemerow index and Hakanson potential ecological risk index;and identified the source category of heavy metals in the topsoil by using a pedigree clustering heatmap.Results showed that the geochemical baseline values were 42.86,89.34,92.23,60.55,145.21,0.09,0.08 and 4.17 mg/kg for Cu,Ni,Zn,Pb,Cr,Cd,Hg and As,respectively.The results of Nemerow index and Hakanson potential ecological risk index indicated that the urban topsoil in the study area was slightly contaminated and suffering low potential ecological risk.The main contaminated areas dominated in the middle part and northeast part of the study area,especially in the western Haizhou Strip Mine.The result of baseline factor index indicated that Hg and Cd were the major pollution elements.Using a pedigree clustering heatmap,we divided the sources of these heavy metals into three types:type I for Ni and Cr,largely represented the enrichment of heavy metals from natural sources;type II for Cu,Pb,Zn,Cd and As,mainly represented the enrichment of heavy metals from anthropogenic sources;and type III for Hg,represented the form of both natural and anthropogenic inputs.展开更多
Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-...Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.展开更多
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co...Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.展开更多
An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due ...An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.展开更多
Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasion...Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasions on soil,we compared topsoil physiochemical properties at sites with invasive alien tree species(Prosopis juliflora),native tree species(Prosopis cineraria,Acacia tortilis,and Acacia ehrenbergiana),and mixed tree species in Hormozgan Province of Iran in May 2018.In this study,we collected 40 soil samples at a depth of 10 cm under single tree species,including P.juliflora,P.cineraria,A.tortilis,and A.ehrenbergiana,as well as under mixed tree species.The results showed that organic matter,moisture,potassium,calcium,nitrogen,and magnesium in topsoil at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria were higher than that at sites where P.juliflora was present(P<0.05).Sodium at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria and P.juliflora was lower as compared to that at sites with just A.tortilis and A.ehrenbergiana.Electrical conductivity was lower at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria,and it was higher at sites with mixed Acacia and P.juliflora trees.Based on the generally more positive effect of native Acacia and P.cineraria on topsoil physiochemical properties as compared to the P.julifora,afforestation with native tree species is preferable for soil restoration.In addition,due to the negative effects of P.julifora on soil properties,P.julifora spread should be better managed.展开更多
The geochemical baseline is the fundamental reference for environmental change and assessment.In this article we describe cluster and regression analyses with a normalization procedure.The elements Sc and Ag were chos...The geochemical baseline is the fundamental reference for environmental change and assessment.In this article we describe cluster and regression analyses with a normalization procedure.The elements Sc and Ag were chosen to calculate the environmental geochemical baseline.The geoaccumulation index was calculated and mapped to indicate the environmental quality of the soil.The results show that the urban areas are barely polluted with Ni and Cr but the rural areas in the southern part of the city, and the western part of the lake,are polluted with Ni,Cr,and Cu at the second level.On the other hand,the rural areas in the southern part of the city,and the western part of the lake,are polluted with As at a moderate level.The other area is polluted at the second level.An increase in As pollution occurs in a direction from northeast to southwest.The Cd pollution follows a trend similar to As,with an additional smaller contaminated area polluted at levelⅢ.The Hg pollution typical of urban areas occurs in the main and northern parts of the city.The geochemical accumulation index decreases from the city center to the periphery.The highest pollution level reaches levelⅣ,which indicates that the soil is seriously polluted with Hg.The southern part of the city and the rural areas to the west of the lake are not contaminated with Hg.Geological factors and the disturbance from human activities are both possible major factors:further research is needed to identify them.展开更多
The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will th...The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”.展开更多
During the 17th Century, Parral City in the Chihuahua State in Mexico was one of the most important miner zones in the whole world. After more than three centuries important amounts of residuals, known as tailings, wi...During the 17th Century, Parral City in the Chihuahua State in Mexico was one of the most important miner zones in the whole world. After more than three centuries important amounts of residuals, known as tailings, with high contents of heavy metals were generated. These residuals are a potential risk for the environment and human health. Given to that, it decided to carry out the analysis of the concentrations of cadmium, lead, chromium, zinc and arsenics, in topsoil samples susceptible of airborne transport and accumulation in risky zones (populated areas). A 120 kin: area was selected, this include Parral City and its surroundings. From this area 30 samples were obtained. For this purpose, Atomic Absorption Spectroscopy technique was used, expecting high concentrations of heavy metals, above the permit limits, since several studies carried out in the same region, as in San Francisco del Oro Chihuahua, show that the concentrations of all the elements sampled, in topsoil, were above the limits. The analysis in the space distribution of the heavy metal detected will allow us to set the points with the highest susceptibility to the accumulation of those pollutants and to propose mitigation measures and control.展开更多
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the proc...Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.展开更多
This study aimed to provide a basis for the rational improvement of the microstructure of the soil that had been planted with crops for a long time. Conventional and micro-morphological methods were used to study the ...This study aimed to provide a basis for the rational improvement of the microstructure of the soil that had been planted with crops for a long time. Conventional and micro-morphological methods were used to study the effects of planting grain and cotton crops on soil properties in Gaotang County,Shandong Province. The results showed that long-term cultivation of grain and cotton crops has a significant impact on soil micro-structure. The top soil( 0-10 cm) of wheat-maize field has higher organic matter content,uniform aggregate size,high separation,and strong packing void connectivity,forming a type micro-structure that is conducive to agricultural production. The characteristics of soil matrix are mainly inherited from soil parent materials,and the impact of crop cultivation on soil matrix is very weak. The amount of formations in the soil is less,and only Fe nodules,Mn nodules and excrement are observed.展开更多
The available contents of microelements in the topsoil can influence the yield and quality of flue-cured tobacco. Xuancheng is the dominant tobacco-planting region in Anhui province since 2008. In this paper, the tops...The available contents of microelements in the topsoil can influence the yield and quality of flue-cured tobacco. Xuancheng is the dominant tobacco-planting region in Anhui province since 2008. In this paper, the topsoil available Fe, Mn, Cu and Zn contents of 4197 farmlands mainly under rice-rice rotation and wheat-rice rotation in 2008 and of 124 typical farmlands under tobacco-rice rotation in 2015 in Xuancheng city were analyzed in order to disclose the changes and spatial distributions of these microelements and to instruct the reasonable application of the microelement fertilizers. The results showed that the topsoil average available contents in the farmlands under rice-rice rotation or wheat-rice rotation in 2008 were 105.9 mg·kg-1 for Fe, 19.6 mg·kg-1 for Mn, 4.5 mg·kg-1 for Cu, and 3.0 mg·kg-1 for Zn, respectively, increased by 33.14%, 64.29%, 51.11% and 36.67%, respectively, compared with those in the 2nd Soil Survey in 1980s, and the historic, once intensive and overall application of microelement fertilizers was attributed to the great increases. The topsoil average available contents in the farmlands under tobacco-rice rotation in 2015 were 31.1 mg·kg-1 for Fe, 9.8 mg·kg-1 for Mn, 2.1 mg·kg-1 for Cu, and 0.3 mg·kg-1 for Zn, respectively, decreased by 70.63%, 50.00%, 53.33% and 90.00%, respectively, compared with those of the farmlands under rice-rice rotation or wheat-rice rotation in 2008, and the net deficiencies in the input and output of microelements were attributed to the significant decreases in the topsoil microelements. It is necessary to monitor the farmlands under tobacco-rice rotation dynamically and in time in order to decide whether applying microelement fertilizers or not.展开更多
The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from differen...The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the topsoils of the study area.The herbal phytoliths are primarily composed of elongated,tooth-shaped,point-shaped and hat-shaped phytoliths,as well as a small amount of fan-shaped and square-shaped ones.The elongated,tooth-shaped,point-shaped and hat-shaped phytoliths are representative of cold climate,while fan-shaped and square-shaped ones are representative of warm and humid climate.In the conifer broadleaved mixed forest zone,coniferous forest zone and broadleaf forest zone,there are close correlations between vegetation and woody phytoliths in the topsoils,indicating that the woody plants of a region can be reconstructed from the woody phytolith assemblages in the topsoils.Meanwhile,the topsoil phytolith assemblages can also be used to reconstruct the understory herbs effectively.The phytolith assemblages in the topsoils of the forest community and herbal community differ significantly,which can help indicate the historical location of the timberline.展开更多
Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris,especially in the areas of managed forest ecosystems.Induced shifts in soils due to management practic...Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris,especially in the areas of managed forest ecosystems.Induced shifts in soils due to management practices play a crucial role in the restoration and maintaining of key ecosystem services.This paper focuses on topsoil chemical properties in relation to vegetation type(trees,shrubs and herbs)evolving at windstorm damaged(in 2004)areas with former Norway spruce(Picea abies)forests in the Tatra Mts.region(Slovakia).We assessed the content of topsoil organic matter fractions(extractives,holocellulose(HC)and lignin(Lig)),carbon in microbial biomass(Cmic),soil organic matter(SOM)and the content of elements N,C,H and S.The study plots represent different types of post-windthrow disturbance history/regime:wooden debris extraction(EXT),wooden debris not extracted(NEX),wooden debris extraction followed by wildfire(FIR),affected by the windstorm in 2014 with the subsequent wooden debris extraction(REX)and unaffected(REF).Our results revealed significant differences among sites in the content of dichloromethane extractives(EXT vs.REX and FIR),acetone extractives(NEX vs.EXT,FIR and REF),ethanol extractives(FIR vs.EXT,NEX and REF),water extractives(FIR vs.REX,NEX)and Cmic(EXT vs.NEX,FIR and REF).The topsoil of Vaccinium myrtillus and Picea abies showed a higher ratio of C/N,N/Lig,and Lig/HC compared to Rubus idaeus,Avenella flexuosa,Calamagrostis villosa,and Larix decidua.The content of N,C,H and S varied between topsoil with shrubs(Vaccinium myrtillus,Rubus idaeus)and grasses(Avenella flexuosa,Calamagrostis villosa).A positive correlation between soil organic matter(SOM)and polar extractives(r=0.81)and a negative correlation between SOM and HC(r=-0.83)was revealed.The carbon content in microbial biomass(Cmic)is positively correlated with acid soluble lignin(ASL)(r=0.85).We also identified a strong correlation between Klason lignin(KL)and the Lig/HC ratio(r=0.97).展开更多
基金supported by grants from the National Key Research and Development Program of China(2021YFD1900700 and 2018YFD0200401)the China Agricultural Research System(CARS-3)the Science and Technology Research Program of Shaanxi Province,China(2022PT-06)。
文摘The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
基金the Basic Work of Science and Technology,Ministry of Science and Technology,China(2014FY110200A07)
文摘Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of topsoil SOC density and CSP of 21 soil groups across Hebei Province, China, using data collected during the second national soil survey in the 1980 s and during the recent soil inventory in 2010. The CSP can be estimated by the method that the saturated SOC content subtracts the actual SOC associated with clay and silt. Overall, the SOC density and CSP of most soil groups increased from the 1980 s to 2010 and varied between different soil groups. Among all soil groups, Haplic phaeozems had the highest SOC density and Endogleyic solonchaks had the largest CSP. Areas of soil groups with the highest SOC density(90 to 120 t C ha^(–1)) and carbon sequestration(120 to 160 t C ha^(–1)) also increased over time. With regard to spatial distribution, the north of the province had higher SOC density but lower CSP than the south. With respect to land-use type, cultivated soils had lower SOC density but higher CSP than uncultivated soils. In addition, SOC density and CSP were influenced by soil physicochemical properties, climate and terrain and were most strongly correlated with soil humic acid concentration. The results suggest that soil groups(uncultivated soils) of higher SOC density have greater risk of carbon dioxide emission and that management should be aimed at maximizing carbon sequestration in soil groups(cultivated soils) with greater CSP. Furthermore, soils should be managed according to their spatial distributions of SOC density and carbon sequestration potential under different soil groups.
基金supported by the National Natural Sci-ence Foundation of China (No 20777063) China Postdoctoral Science Foundation (No 20080440731)
文摘The levels and distribution of mercury (Hg) species, including total mercury (THg) and methylmercury (MeHg) in the topsoil and dust collected from twenty sampling stations located in different land function areas of Xiamen, China, were investigated. The THg concentrations in topsoil ranged from 0.071 to 1.2 mg/kg, and in dust ranged from of 0.034 to 1.4 mg/kg. For stations where the THg of dust was less than 0.31 mg/kg, THg concentrations in the topsoil were significantly correlated to those in the corresponding dust (r = 0.597, n = 16, P = 0.014). The MeHg concentrations in topsoil were varied between 0.14 and 5.7 μg/kg. The ratios of MeHg/THg in the topsoil ranged from 0.069% to 0.74%. The range of MeHg concentration in the dust were 0.092-2.3 μg/kg. The ratios of MeHg/THg in the dust were at the same level as those in the topsoil. The MeHg concentrations in both topsoil and dust were linked to corresponding THg concentrations and soil organic matter. Neither THg nor MeHg concentration in the topsoil and dust was obviously linked to the land function.
文摘Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil > alluvial sandy paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon(R2=0.62) and clay content(R2=0.67) in the tested paddy soils. Positive correlation was found between apparent K d value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil>yellow clayey paddy soil>reddish yellow paddy soil>alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%—4.2% of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil > reddish yellow paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.
基金Under the auspices of the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090182120024)National Natural Science Foundation of China (No. 41101568)+1 种基金Natural Science Foundation Project of Chongqing Science & Technology Commission (No. cstcjjA00008)Fundamental Research Funds for the Central Universities (2012XZZX012)
文摘Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.
基金the National Natural Science Foundation of China(41271064)the Foundation of Liaoning Educational Committee,China(L201783640)the PhD Research Startup Foundation of Liaoning University,China(BS2018L014)。
文摘Urban topsoil is the most frequent interface between human society and natural environment.The accumulation of heavy metals in the urban topsoil has a direct effect on residents'life and health.The geochemical baseline of heavy metals is an objective description of the general level of heavy metals in the urban topsoil.Meanwhile,the determination of geochemical baseline is necessary for regional environmental management,especially in coal cities prone to heavy metal pollution.Heavy metal pollution has become an environmental problem in Fuxin City,China for a long time.To establish the geochemical baseline of heavy metals in the topsoil of Fuxin City and to evaluate the ecological risk of the topsoil,we collected 75 topsoil samples(0–20 cm)and analyzed the concentrations of Cu,Ni,Zn,Pb,Cr,Cd,Hg and As through X-ray fluorescence spectrometry,atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry.We determined the geochemical baseline of heavy metals in the topsoil of Fuxin City by using iteration removal,box-whisker plot,cumulative frequency curve and reference metal normalization;evaluated the contamination risk and ecological risk of the topsoil by using the baseline factor index,Nemerow index and Hakanson potential ecological risk index;and identified the source category of heavy metals in the topsoil by using a pedigree clustering heatmap.Results showed that the geochemical baseline values were 42.86,89.34,92.23,60.55,145.21,0.09,0.08 and 4.17 mg/kg for Cu,Ni,Zn,Pb,Cr,Cd,Hg and As,respectively.The results of Nemerow index and Hakanson potential ecological risk index indicated that the urban topsoil in the study area was slightly contaminated and suffering low potential ecological risk.The main contaminated areas dominated in the middle part and northeast part of the study area,especially in the western Haizhou Strip Mine.The result of baseline factor index indicated that Hg and Cd were the major pollution elements.Using a pedigree clustering heatmap,we divided the sources of these heavy metals into three types:type I for Ni and Cr,largely represented the enrichment of heavy metals from natural sources;type II for Cu,Pb,Zn,Cd and As,mainly represented the enrichment of heavy metals from anthropogenic sources;and type III for Hg,represented the form of both natural and anthropogenic inputs.
基金Project(2017XKQY012) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(PAPD) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.
基金supported by the Special Funding Projects of“Sanjin Scholars”Supporting Plan(Grant No.2050205)
文摘Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.
文摘An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.
文摘Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasions on soil,we compared topsoil physiochemical properties at sites with invasive alien tree species(Prosopis juliflora),native tree species(Prosopis cineraria,Acacia tortilis,and Acacia ehrenbergiana),and mixed tree species in Hormozgan Province of Iran in May 2018.In this study,we collected 40 soil samples at a depth of 10 cm under single tree species,including P.juliflora,P.cineraria,A.tortilis,and A.ehrenbergiana,as well as under mixed tree species.The results showed that organic matter,moisture,potassium,calcium,nitrogen,and magnesium in topsoil at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria were higher than that at sites where P.juliflora was present(P<0.05).Sodium at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria and P.juliflora was lower as compared to that at sites with just A.tortilis and A.ehrenbergiana.Electrical conductivity was lower at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria,and it was higher at sites with mixed Acacia and P.juliflora trees.Based on the generally more positive effect of native Acacia and P.cineraria on topsoil physiochemical properties as compared to the P.julifora,afforestation with native tree species is preferable for soil restoration.In addition,due to the negative effects of P.julifora on soil properties,P.julifora spread should be better managed.
基金supported by the National Hi-tech Research and Development Program of China(No. 2009AA12Z147)the Postdoctorial Foundation of China(No.20090451339)+2 种基金the Postdoctorial Foundation of Shandong Province(No.200802013)Soft Science Project of Shandong Province(No.2007 RKA071)this research is also supported by Qingdao Economic & Technical Developing District Project (No.2008-2-26).
文摘The geochemical baseline is the fundamental reference for environmental change and assessment.In this article we describe cluster and regression analyses with a normalization procedure.The elements Sc and Ag were chosen to calculate the environmental geochemical baseline.The geoaccumulation index was calculated and mapped to indicate the environmental quality of the soil.The results show that the urban areas are barely polluted with Ni and Cr but the rural areas in the southern part of the city, and the western part of the lake,are polluted with Ni,Cr,and Cu at the second level.On the other hand,the rural areas in the southern part of the city,and the western part of the lake,are polluted with As at a moderate level.The other area is polluted at the second level.An increase in As pollution occurs in a direction from northeast to southwest.The Cd pollution follows a trend similar to As,with an additional smaller contaminated area polluted at levelⅢ.The Hg pollution typical of urban areas occurs in the main and northern parts of the city.The geochemical accumulation index decreases from the city center to the periphery.The highest pollution level reaches levelⅣ,which indicates that the soil is seriously polluted with Hg.The southern part of the city and the rural areas to the west of the lake are not contaminated with Hg.Geological factors and the disturbance from human activities are both possible major factors:further research is needed to identify them.
文摘The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”.
文摘During the 17th Century, Parral City in the Chihuahua State in Mexico was one of the most important miner zones in the whole world. After more than three centuries important amounts of residuals, known as tailings, with high contents of heavy metals were generated. These residuals are a potential risk for the environment and human health. Given to that, it decided to carry out the analysis of the concentrations of cadmium, lead, chromium, zinc and arsenics, in topsoil samples susceptible of airborne transport and accumulation in risky zones (populated areas). A 120 kin: area was selected, this include Parral City and its surroundings. From this area 30 samples were obtained. For this purpose, Atomic Absorption Spectroscopy technique was used, expecting high concentrations of heavy metals, above the permit limits, since several studies carried out in the same region, as in San Francisco del Oro Chihuahua, show that the concentrations of all the elements sampled, in topsoil, were above the limits. The analysis in the space distribution of the heavy metal detected will allow us to set the points with the highest susceptibility to the accumulation of those pollutants and to propose mitigation measures and control.
基金sponsored by the National Key Basic Research Program of China (No.2013CB227905)Qinglan Projects of Jiangsu Province
文摘Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.
基金Supported by Natural Science Foundation of Shandong Province(ZR2016DM14)
文摘This study aimed to provide a basis for the rational improvement of the microstructure of the soil that had been planted with crops for a long time. Conventional and micro-morphological methods were used to study the effects of planting grain and cotton crops on soil properties in Gaotang County,Shandong Province. The results showed that long-term cultivation of grain and cotton crops has a significant impact on soil micro-structure. The top soil( 0-10 cm) of wheat-maize field has higher organic matter content,uniform aggregate size,high separation,and strong packing void connectivity,forming a type micro-structure that is conducive to agricultural production. The characteristics of soil matrix are mainly inherited from soil parent materials,and the impact of crop cultivation on soil matrix is very weak. The amount of formations in the soil is less,and only Fe nodules,Mn nodules and excrement are observed.
文摘The available contents of microelements in the topsoil can influence the yield and quality of flue-cured tobacco. Xuancheng is the dominant tobacco-planting region in Anhui province since 2008. In this paper, the topsoil available Fe, Mn, Cu and Zn contents of 4197 farmlands mainly under rice-rice rotation and wheat-rice rotation in 2008 and of 124 typical farmlands under tobacco-rice rotation in 2015 in Xuancheng city were analyzed in order to disclose the changes and spatial distributions of these microelements and to instruct the reasonable application of the microelement fertilizers. The results showed that the topsoil average available contents in the farmlands under rice-rice rotation or wheat-rice rotation in 2008 were 105.9 mg·kg-1 for Fe, 19.6 mg·kg-1 for Mn, 4.5 mg·kg-1 for Cu, and 3.0 mg·kg-1 for Zn, respectively, increased by 33.14%, 64.29%, 51.11% and 36.67%, respectively, compared with those in the 2nd Soil Survey in 1980s, and the historic, once intensive and overall application of microelement fertilizers was attributed to the great increases. The topsoil average available contents in the farmlands under tobacco-rice rotation in 2015 were 31.1 mg·kg-1 for Fe, 9.8 mg·kg-1 for Mn, 2.1 mg·kg-1 for Cu, and 0.3 mg·kg-1 for Zn, respectively, decreased by 70.63%, 50.00%, 53.33% and 90.00%, respectively, compared with those of the farmlands under rice-rice rotation or wheat-rice rotation in 2008, and the net deficiencies in the input and output of microelements were attributed to the significant decreases in the topsoil microelements. It is necessary to monitor the farmlands under tobacco-rice rotation dynamically and in time in order to decide whether applying microelement fertilizers or not.
基金Under the auspices of National Natural Science Foundation of China (No 40971116)Major State Basic Research Development Program of China (No 2009CB426305)Technology Innovation Project of Northeast Normal University in Eleventh Five-Year Plan Period (No NENU-Stb07002)
文摘The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the topsoils of the study area.The herbal phytoliths are primarily composed of elongated,tooth-shaped,point-shaped and hat-shaped phytoliths,as well as a small amount of fan-shaped and square-shaped ones.The elongated,tooth-shaped,point-shaped and hat-shaped phytoliths are representative of cold climate,while fan-shaped and square-shaped ones are representative of warm and humid climate.In the conifer broadleaved mixed forest zone,coniferous forest zone and broadleaf forest zone,there are close correlations between vegetation and woody phytoliths in the topsoils,indicating that the woody plants of a region can be reconstructed from the woody phytolith assemblages in the topsoils.Meanwhile,the topsoil phytolith assemblages can also be used to reconstruct the understory herbs effectively.The phytolith assemblages in the topsoils of the forest community and herbal community differ significantly,which can help indicate the historical location of the timberline.
文摘Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris,especially in the areas of managed forest ecosystems.Induced shifts in soils due to management practices play a crucial role in the restoration and maintaining of key ecosystem services.This paper focuses on topsoil chemical properties in relation to vegetation type(trees,shrubs and herbs)evolving at windstorm damaged(in 2004)areas with former Norway spruce(Picea abies)forests in the Tatra Mts.region(Slovakia).We assessed the content of topsoil organic matter fractions(extractives,holocellulose(HC)and lignin(Lig)),carbon in microbial biomass(Cmic),soil organic matter(SOM)and the content of elements N,C,H and S.The study plots represent different types of post-windthrow disturbance history/regime:wooden debris extraction(EXT),wooden debris not extracted(NEX),wooden debris extraction followed by wildfire(FIR),affected by the windstorm in 2014 with the subsequent wooden debris extraction(REX)and unaffected(REF).Our results revealed significant differences among sites in the content of dichloromethane extractives(EXT vs.REX and FIR),acetone extractives(NEX vs.EXT,FIR and REF),ethanol extractives(FIR vs.EXT,NEX and REF),water extractives(FIR vs.REX,NEX)and Cmic(EXT vs.NEX,FIR and REF).The topsoil of Vaccinium myrtillus and Picea abies showed a higher ratio of C/N,N/Lig,and Lig/HC compared to Rubus idaeus,Avenella flexuosa,Calamagrostis villosa,and Larix decidua.The content of N,C,H and S varied between topsoil with shrubs(Vaccinium myrtillus,Rubus idaeus)and grasses(Avenella flexuosa,Calamagrostis villosa).A positive correlation between soil organic matter(SOM)and polar extractives(r=0.81)and a negative correlation between SOM and HC(r=-0.83)was revealed.The carbon content in microbial biomass(Cmic)is positively correlated with acid soluble lignin(ASL)(r=0.85).We also identified a strong correlation between Klason lignin(KL)and the Lig/HC ratio(r=0.97).