Acellular peripheral allograft scaffolds can be fabricated using chemical extraction techniques,but methods for producing acellular scaffold derived from spinal cord tissue are not currently available.The present stud...Acellular peripheral allograft scaffolds can be fabricated using chemical extraction techniques,but methods for producing acellular scaffold derived from spinal cord tissue are not currently available.The present study demonstrated that chemical extraction using Triton X-100 and sodium deoxycholate could be used to completely remove the cells,axons and neural sheaths in spinal cord extracellular matrix-derived scaffolds.The matrix fibers were longitudinally arranged in a wave-like formation,and were connected by fiber junctions.Lattice-shaped fiber cages appeared and developed into bone trabecula-like changes.The natural structure of matrix fibers in the scaffolds was maintained;this helps to guide the differentiation and migration of implanted stem cells.Decellularized spinal cord extracellular matrix-derived scaffolds can provide an ideal substance for fabricating tissue-engineered spinal cord.展开更多
Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydro...Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.展开更多
AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional ...AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.展开更多
Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derive...Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained pink,smooth and translucent cartilage-like tissue after 3 weeks of culture.We observed evenly distributed cartilage ECM proteoglycans and collagen type Ⅱ around seeded BMSCs on the surface and inside the pores throughout the scaffold.Conclusion This study stuggests that a cartilage ECM scaffold holds much promise for in vitro cartilage tissue engineering.展开更多
Osteochondral lesion repair is a challenging area of orthopedic surgery. Here we aimed to develop an extracellular matrix-derived, integrated, biphasic scaffold and to investigate the regeneration potential of the sca...Osteochondral lesion repair is a challenging area of orthopedic surgery. Here we aimed to develop an extracellular matrix-derived, integrated, biphasic scaffold and to investigate the regeneration potential of the scaffold loaded with chondrogenically-induced bone marrow-derived mesenchymal stem cells (BMSCs) in the repair of a large, high-load-bearing, osteochondral defect in a canine model. Methods The biphasic scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and characterized by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Osteochondral constructs were fabricated in vitro using chondrogenically-induced BMSCs and a biphasic scaffold, then assessed by SEM for cell attachment. Osteochondral defects (4.2 mm (diameter) ×6 mm (depth)) were created in canine femoral condyles and treated with a construct of the biphasic scaffold/chondrogenically-induced BMSCs or with a cell-free scaffold (control group). The repaired defects were evaluated for gross morphology and by histological, biochemical, biomechanical and micro-CT analyses at 3 and 6 months post-implantation. Results The osteochondral defects of the experimental group showed better repair than those of the control group. Statistical analysis demonstrated that the macroscopic and histologic grading scores of the experimental group were always higher than those of the control group, and that the scores for the experimental group at 6 months were significantly higher than those at 3 months. The cartilage stiffness in the experimental group (6 months) was (6.95±0.79) N/mm, 70.77% of normal cartilage; osteochondral bone stiffness in the experimental group was (158.16±24.30) N/mm, 74.95% of normal tissue; glycosaminoglycan content of tissue-engineered neocartilage was (218±21.6) tJg/mg (dry weight), 84.82% of native cartilage. Micro-CT analysis of the subchondral bone showed mature trabecular bone regularly formed at 3 and 6 months, with no significant difference between the experimental and control groups. Conclusion The extracellular matrix-derived, integrated, biphasic scaffold shows potential for the repair of large, high-load-bearing osteochondral defects.展开更多
In addition to squamous cell carcinoma,the incidence of Barrett's esophagus with high-grade dysplasia and esophageal adenocarcinoma is rapidly increasing worldwide.Unfortunately,the current standard of care for es...In addition to squamous cell carcinoma,the incidence of Barrett's esophagus with high-grade dysplasia and esophageal adenocarcinoma is rapidly increasing worldwide.Unfortunately,the current standard of care for esophageal pathology involves resection of the affected tissue,sometimes involving radical esophagectomy.Without exception,these procedures are associated with a high morbidity,compromised quality of life,and unacceptable mortality rates.Regenerative medicine approaches to functional tissue replacement include the use of biological and synthetic scaffolds to promote tissue remodeling and growth.In the case of esophageal repair,extracellular matrix(ECM) scaffolds have proven to be effective for the reconstruction of small patch defects,anastomosis reinforcement,and the prevention of stricture formation after endomucosal resection(EMR).More so,esophageal cancer patients treated with ECM scaffolds have shown complete restoration of a normal,functional,and disease-free epithelium after EMR.These studies provide evidence that a regenerative medicine approach may enable aggressive resection of neoplastic tissue without the need for radical esophagectomy and its associated complications.展开更多
基金Science Foundation of Shaoguan in Guangdong Province, No. 2010-07the Natural Science Foundation of Guangdong Province, China, No. 10451202602005995
文摘Acellular peripheral allograft scaffolds can be fabricated using chemical extraction techniques,but methods for producing acellular scaffold derived from spinal cord tissue are not currently available.The present study demonstrated that chemical extraction using Triton X-100 and sodium deoxycholate could be used to completely remove the cells,axons and neural sheaths in spinal cord extracellular matrix-derived scaffolds.The matrix fibers were longitudinally arranged in a wave-like formation,and were connected by fiber junctions.Lattice-shaped fiber cages appeared and developed into bone trabecula-like changes.The natural structure of matrix fibers in the scaffolds was maintained;this helps to guide the differentiation and migration of implanted stem cells.Decellularized spinal cord extracellular matrix-derived scaffolds can provide an ideal substance for fabricating tissue-engineered spinal cord.
基金supported by the National Natural Science Foundation of China,No.31071222Jilin Province Science and Technology Development Project in China,No.20080738the Frontier Interdiscipline Program of Norman Bethune Health Science Center of Jilin University in China,No.2013106023
文摘Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.
文摘AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.
基金This study was funded by the National Natural Science Foundation of China (Nos. 31000432, 30930092 and 81272046) and National Technology Research and Development Program of China (No. 2012AA020502, 2012CB518106).Acknowledgments: We thank HUANG Jing-xiang, T1AN Yue, and SUI Xiang for kind assistance in cell culture and histology.
文摘Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained pink,smooth and translucent cartilage-like tissue after 3 weeks of culture.We observed evenly distributed cartilage ECM proteoglycans and collagen type Ⅱ around seeded BMSCs on the surface and inside the pores throughout the scaffold.Conclusion This study stuggests that a cartilage ECM scaffold holds much promise for in vitro cartilage tissue engineering.
基金the grants from the National Science Foundation of China,the Research Foundation of the Tianjin Health Bureau
文摘Osteochondral lesion repair is a challenging area of orthopedic surgery. Here we aimed to develop an extracellular matrix-derived, integrated, biphasic scaffold and to investigate the regeneration potential of the scaffold loaded with chondrogenically-induced bone marrow-derived mesenchymal stem cells (BMSCs) in the repair of a large, high-load-bearing, osteochondral defect in a canine model. Methods The biphasic scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and characterized by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Osteochondral constructs were fabricated in vitro using chondrogenically-induced BMSCs and a biphasic scaffold, then assessed by SEM for cell attachment. Osteochondral defects (4.2 mm (diameter) ×6 mm (depth)) were created in canine femoral condyles and treated with a construct of the biphasic scaffold/chondrogenically-induced BMSCs or with a cell-free scaffold (control group). The repaired defects were evaluated for gross morphology and by histological, biochemical, biomechanical and micro-CT analyses at 3 and 6 months post-implantation. Results The osteochondral defects of the experimental group showed better repair than those of the control group. Statistical analysis demonstrated that the macroscopic and histologic grading scores of the experimental group were always higher than those of the control group, and that the scores for the experimental group at 6 months were significantly higher than those at 3 months. The cartilage stiffness in the experimental group (6 months) was (6.95±0.79) N/mm, 70.77% of normal cartilage; osteochondral bone stiffness in the experimental group was (158.16±24.30) N/mm, 74.95% of normal tissue; glycosaminoglycan content of tissue-engineered neocartilage was (218±21.6) tJg/mg (dry weight), 84.82% of native cartilage. Micro-CT analysis of the subchondral bone showed mature trabecular bone regularly formed at 3 and 6 months, with no significant difference between the experimental and control groups. Conclusion The extracellular matrix-derived, integrated, biphasic scaffold shows potential for the repair of large, high-load-bearing osteochondral defects.
基金Supported by Award Number T32EBO01026-08,from the National Institute of Biomedical Imaging and Bioengineering, in part
文摘In addition to squamous cell carcinoma,the incidence of Barrett's esophagus with high-grade dysplasia and esophageal adenocarcinoma is rapidly increasing worldwide.Unfortunately,the current standard of care for esophageal pathology involves resection of the affected tissue,sometimes involving radical esophagectomy.Without exception,these procedures are associated with a high morbidity,compromised quality of life,and unacceptable mortality rates.Regenerative medicine approaches to functional tissue replacement include the use of biological and synthetic scaffolds to promote tissue remodeling and growth.In the case of esophageal repair,extracellular matrix(ECM) scaffolds have proven to be effective for the reconstruction of small patch defects,anastomosis reinforcement,and the prevention of stricture formation after endomucosal resection(EMR).More so,esophageal cancer patients treated with ECM scaffolds have shown complete restoration of a normal,functional,and disease-free epithelium after EMR.These studies provide evidence that a regenerative medicine approach may enable aggressive resection of neoplastic tissue without the need for radical esophagectomy and its associated complications.