Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-G...Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality.展开更多
The visualization of arteries and heart usually plays a crucial role in the clinical diagnosis, but researchers face the problems of region selection and mutual occlusion in clinical visualization. Therefore, the arte...The visualization of arteries and heart usually plays a crucial role in the clinical diagnosis, but researchers face the problems of region selection and mutual occlusion in clinical visualization. Therefore, the arteries and the heart cannot be easily visualized by current visualization methods. To solve the problems, we propose a new framework for arteries and cardiac visualization by combining a priori knowledge and the set operations.Firstly, a suitable region can be easily determined in the transfer function space with a priori knowledge and the visual feedback results. Secondly, the arteries and the heart can be directly extracted by the marked seed point.Finally, the arteries and the heart are separated for solving mutual occlusion through the set operations. This framework can easily solve the mutual occlusion problem in clinical visualization and greatly improve the region selection method in the transfer function space. Its effectiveness has been demonstrated on the basis of many experimental results.展开更多
文摘Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality.
基金the National Basic Research Program(973)of China(No.2013CB329401)the National Natural Science Foundation of China(No.61375020)the Cross Research Fund of Biomedical Engineering of Shanghai Jiao Tong University(No.YG2013ZD02)
文摘The visualization of arteries and heart usually plays a crucial role in the clinical diagnosis, but researchers face the problems of region selection and mutual occlusion in clinical visualization. Therefore, the arteries and the heart cannot be easily visualized by current visualization methods. To solve the problems, we propose a new framework for arteries and cardiac visualization by combining a priori knowledge and the set operations.Firstly, a suitable region can be easily determined in the transfer function space with a priori knowledge and the visual feedback results. Secondly, the arteries and the heart can be directly extracted by the marked seed point.Finally, the arteries and the heart are separated for solving mutual occlusion through the set operations. This framework can easily solve the mutual occlusion problem in clinical visualization and greatly improve the region selection method in the transfer function space. Its effectiveness has been demonstrated on the basis of many experimental results.