Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wa...Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wastewater purification processes do not effectively remove many chemical contaminants,展开更多
The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured ...The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.展开更多
Water erosion is the major reason for the loss of soil organic carbon in the Northeast China, which leads to the soil quality deterioration and adjacent water pollution. In this study, the effect of extraction tempera...Water erosion is the major reason for the loss of soil organic carbon in the Northeast China, which leads to the soil quality deterioration and adjacent water pollution. In this study, the effect of extraction temperature, pH value, and salt on the water extractable organic matter (WEOM) was determined by means of the UV absorbance, fluorescence excitation-emission matrix, and derived fluorescence indexes. In general, the carbon content and aromaticity of WEOM increased with the increasing of extraction temperature, with the exception that there was no significant difference in the amount at 0 and 20℃. More fluorophores, especially microbially-derived organic matter were extracted at high temperature. The pH values of extractant, including 5, 7, and 10, showed no effect on the carbon amount of WEOM, whereas the aromaticity and microbially-derived component gradually increased with the increasing of pH values. The fluorescence intensity of humic acid-like fluorophore was stronger in neutral and alkali condition than that in acidic condition. The addition of 10 mmol L-1 CaCl2 significantly decreased the carbon amount of recovered WEOM. Moreover, it significantly decreased the aromaticity of WEOM and the quantity of fulvic acid-like and humic acid-like fluorophores, whereas increased the percentage of tyrosine-like and tryptophan-like fluorophores in the total fluorophores and the amount of microbially-derived organic matter. Generally, 10 mmol L-1 KCl showed the same influence trend, but with low influence degree.展开更多
The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl p...The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl phthalate were proved to be suitable solvents .The optimal volumetric percentage of organic solvents in the culture medium was found to be around 8%,and the favorable time for their introduction was at the exponential phase of cell growth,Paclitaxel production with the in situ extraction was ca 3-fold of that without extraction.展开更多
Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WS...Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on the both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, and provided useful information to soil fertility.展开更多
The rapid development of nuclear technology has led to more liquid organic radioactive wastes. Different from the regular aqueous radioactive wastes, these liquids possess a higher hazard potential and cannot be dispo...The rapid development of nuclear technology has led to more liquid organic radioactive wastes. Different from the regular aqueous radioactive wastes, these liquids possess a higher hazard potential and cannot be disposed through the conventional methods due to their radioactivity and chemical nature. Spent extraction solvent is a kind of common liquid organic radioactive wastes. In this work, tri-butyl phosphate(TBP), which is more difficult to degrade in the spent extraction solvent, was used as the model compound. Influences of reaction conditions on total organic carbon(TOC) removal and the volume percentage of each gas component under supercritical water oxidation(SCWO) were studied. The SCWO behaviors of spent extraction solvent simulants were studied under the optimal conditions derived from the TBP experiment. The SCWO experiments were studied at 400–550℃, oxidant stoichiometric ratio of 0–200%, feed concentration of 1.5%–4% and pressure of25 MPa for 15–75 s. The results show that the TOC removal of the simulants was greater than 99.7% and CH4,H2 and CO were not detected at 550℃, 25 MPa, oxidant stoichiometric ratio of 150%, feed concentration of3%, and residence time of 30 s.展开更多
Seventy organic compounds including various organophosphorus esters, amines and oxygen-based ligands were investigated as extractants. The experiment results show that amines are excellent extractants for W and Mo. Th...Seventy organic compounds including various organophosphorus esters, amines and oxygen-based ligands were investigated as extractants. The experiment results show that amines are excellent extractants for W and Mo. Their sequence of extraction ability for W is as follows: quarternary amine > tertiary amine > secondary amine > primary amine. Acidic organophosphorus extractants do not extract W, but can extract Mo with high extraction ability from the acidic solution. These extractants could provide a potential process for separating W from Mo.展开更多
This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueous matrices. Orthogonal experiments ...This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueous matrices. Orthogonal experiments were performed to optimize the operating conditions such as temperature, co solvents and so on. Under favorable conditions, high removal efficiencies can be readily achieved for a great number of representative model organic contaminants, the removal efficiencies for most of the hydrophobic contaminants were greater than 90% in a single extraction stage. Tentative effort was also done for the removal of extracted contaminants from recycled liquefied gases.展开更多
A modified analytical procedure has been developed to test for 5 organic pollutants [benzophenone, 2 diisopropylnaphthalenes (DIPNs) {2,6- and 2,7-diisopropylnapthalene} and 2 hydrogenated terphenyls (HTPs) {m-terphen...A modified analytical procedure has been developed to test for 5 organic pollutants [benzophenone, 2 diisopropylnaphthalenes (DIPNs) {2,6- and 2,7-diisopropylnapthalene} and 2 hydrogenated terphenyls (HTPs) {m-terphenyl and o-terphenyl}] that can be found as residues in recycled cardboards intended for use as food packaging materials and to test for migration levels of these compounds in a food simulant (Tenax). A main objective was to develop a modified rapid and reliable method for the identification and quantification of these compounds at low concentrations. The method was based on ultrasound-assisted solvent extraction (UAE) followed by gas chromatography-mass spectrometry (GC-MS) analysis. The developed method was applied to analyze 3 commercially available recycled carton board food-packaging materials and also to study the potential migration of the 5 organic pollutants from these materials into Tenax to check if these recycled cardboards can be considered as suitable for use in direct contact with foodstuffs. The limits of detection (LODs) of standard solutions of the 5 compounds were determined at a signal-to-noise ratio of 3. The LODs and the limits of quantification (LOQs) of examined pollutants ranged between 0.005 to 0.5 mg/kg, and 0.1 to 1 mg/kg, respectively. The extremely low amounts of most contaminants that migrate from packaging materials to Tenax indicate that the recycled cardboards tested can be safely used for direct food contact applications.展开更多
The extraction of the organic matter (OM) from oil shale (OS) can be achieved by several processing techniques. Normally, these techniques can remove high proportion of the organic material contained in oil shale. In ...The extraction of the organic matter (OM) from oil shale (OS) can be achieved by several processing techniques. Normally, these techniques can remove high proportion of the organic material contained in oil shale. In this work, organic solvents extraction experiments were implemented to investigate the effect of various parameters on Jordanian El-Lajjun oil shale extractability. Results indicate that the approximate organic matter content in studied El-Lajjun oil shale is 17.48%, and 75% of OS sample particles diameters are less than 270 μm. The grain size has minor effect on shale oil extraction via organic solvents. Among eleven solvents used, the highest yield is obtained via the tetrahedrofuran (THF), whereas, with the use of solvent mixtures, the highest bitumen yield is obtained through the mixture of THF and toluene. The solvation variability is related to mode of extraction and various physicochemical factors such as extraction temperature, pressure, solvent type and mixing time, which result in different OM yield. The results indicate that the solvent extraction could be potential for shale oil extraction from Jordanian El-Lajjun OS under certain conditions of temperature, pressure and solvent type used.展开更多
The organic phase extracted from interfacial crud of copper solvent extraction at Dexing Copper Mine was analyzed for its different components by combined gas chromatography mass spectroscopy. It was found that the ma...The organic phase extracted from interfacial crud of copper solvent extraction at Dexing Copper Mine was analyzed for its different components by combined gas chromatography mass spectroscopy. It was found that the main impurities in organic phase were methylnaphthalenes and di methylnaphthalenes which originated from commercial 260# kerosene used as diluent. It was found that the impurities containing diluent was unfavorable to phase disengagement. Methods were suggested to improve diluent properties to prevent stable interfacial emulsion.展开更多
The allelopathic potential of aqueous and organic solvent extacts from Corrigiola telephiifolia Pour which is an aromatic and medicinal plant in mediterranean regions, was investigated under laboratory conditions on t...The allelopathic potential of aqueous and organic solvent extacts from Corrigiola telephiifolia Pour which is an aromatic and medicinal plant in mediterranean regions, was investigated under laboratory conditions on two plant species: Raphanus sativus and Triticum aestivum. The aqueous extract of Corrigiola telephiifolia roots had an important inhibitory effect on the seed germination of the two tested plant species. The dichloromethane and the methanol extracts significantly reduced the growth of radish roots up to 84.44% and 68.85% respectively. The butanol, the dichloromethane and the ethyl acetate extracts had a high inhibitory effect on seed germination and roots growth of wheat. The presence of saponins in butanol extracts and tanins in dichlorometane and ethyl acetate extracts may be responsible of these allelopathic activities. These results suggest that Corrigiola telephiifolia Pour have allelopathic effects and contains potent allelochemicals which should be used for weeds management.展开更多
The heteroligand complex of manganese with 1,10-phenantroline and o-nitrobenzolazosalicylic acid has been investigated by spectrophotometric method. The condition of complexing and extraction, physical-chemical and an...The heteroligand complex of manganese with 1,10-phenantroline and o-nitrobenzolazosalicylic acid has been investigated by spectrophotometric method. The condition of complexing and extraction, physical-chemical and analytical characteristics of this complex have been found. Complex formation is observed in the pH range 5 - 11. Extraction constant was found as 5.3 × 1012, stability constant was found as lgβK = 9.03?± 0.03. Molar absorptivity is ε = (1.36 ± 0.08) × 104 l·g﹣1·cm﹣1. Beer's law is obeyed in the range of 1.0 - 22.5 μkg manganese (II). The extraction-photometric methods of manganese determination have been worked out. The influence of diverse ions on determination of manganese (II) has been studied. The proposed method was applied successfully to determine amount of manganese in tap water.展开更多
We studied the separation and recovery of copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), zinc(Ⅱ), and cadmium(Ⅱ) from magnesium and calcium, using synergistic solvent extraction(SSX) in a typical hydrometallurgical waste solut...We studied the separation and recovery of copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), zinc(Ⅱ), and cadmium(Ⅱ) from magnesium and calcium, using synergistic solvent extraction(SSX) in a typical hydrometallurgical waste solution. A mixture of Versatic 10 acid and Mextral 984 H, diluted with Mextral DT100, was used to obtain fundamental data on p H and distribution isotherms, as well as the kinetics of extraction and stripping. We also investigated the main effects and interactions of common solvent extraction factors: the extraction p H at equilibrium, the temperature, and the extractant concentration. The synergistic effect for extracting metals was confirmed. The results showed that the addition of Mextral 984 H enhanced the separation factors of copper, nickel, cobalt,zinc, and cadmium over magnesium and calcium. Compared with Versatic 10 acid alone, for a mixture of0.5 mol·L^(-1) Versatic 10 acid/0.5 mol·L^(-1)Mextral 984 H, Δp H50 values of copper, nickel, cobalt, zinc, and cadmium were found to be N 2.0, 3.30, 2.85, 0.95, and 1.32 p H units, respectively. The Δp H_(50)(Zn–Mg)and Δp H_(50)(Zn–Ca)values were 3.27 and 2.25, respectively, indicating easy separation and recovery of copper, nickel, zinc, cobalt,and cadmium. The extraction and stripping of copper, cobalt, zinc, and cadmium were fast, with 90% of the metal transferred in 2 min. We next studied whether the metals could be stripped from the extracted liquid selectively in sequence, by using sulfuric acid at different concentrations. The influence of the molecular structure of the oxime and carboxylic acid components upon the synergistic effects was identified by numerical analysis.Excellent separation of copper, nickel, cobalt, and zinc over magnesium and calcium was achieved with this synergistic solvent extraction system.展开更多
In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe...In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities ofMn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/boioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.展开更多
In most organics extraction processes, the commonly used solvents employ solely physical interactions. Therefore, for the recovery and purification of products from complex mixtures, the selectivity and/or capacity of...In most organics extraction processes, the commonly used solvents employ solely physical interactions. Therefore, for the recovery and purification of products from complex mixtures, the selectivity and/or capacity of classical solvents towards the desired solutes is usually insufficient, enforcing the need for complex and thus expensive separation schemes. Significant simplification and cost-reduction can be achieved when affinity solvents would be available that are able to recognize the solutes of interest by their molecular structure. The main development challenges to establish such affinity solvents are: Selection and incorporation of molecular recognition and complexation capabilities; Evaluation of extraction capabilities; Efficient re- covery and recycling of the affinity solvents; Implementation in industrial extraction equipment. This paper presents how these development challenges are addressed at the University of Twente, going all the way from affinity solvent design and synthesis, via high throughput screening and characterization up to pilot plant evaluation. Essential in the successful development of affinity solvents are structural cooperations with molecular chemists and custom synthesis companies for their design and synthesis. The various aspects are illustrated by several examples where newly developed environmentally benign affinity solvents appeared able to create major breakthroughs. The applications addressed involve oxygenates, sugars, and pharmaceutical ingredients, such as optical isomers and biomolecules.展开更多
The methanol, acetone and 1,4-dioxan fractions of leaves of Polyalthia longifolia (Sonn.) Thw. were evaluated for antibacterial and antifungal activity. 91 clinically important strains were used for the study which we...The methanol, acetone and 1,4-dioxan fractions of leaves of Polyalthia longifolia (Sonn.) Thw. were evaluated for antibacterial and antifungal activity. 91 clinically important strains were used for the study which were both clinical isolates as well as identified strains. Piperacillin and gentamicin were used as standards for antibacterial assay, while nystatin and flucanazole were used as standards for antifungal assay. The antibacterial activity was more pronounced against gram positive bacterial and fungal strains. Poor activity was shown against gram negative bacterial strains studied.展开更多
Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm...Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ε) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×10^4. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60℃ in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.展开更多
The present work aims to evaluate and document the heavy metal distribution along Jazan coastline, southwest Saudi Arabia. Moreover, a trial for mining minerals from seawater has been performed where solvent extractio...The present work aims to evaluate and document the heavy metal distribution along Jazan coastline, southwest Saudi Arabia. Moreover, a trial for mining minerals from seawater has been performed where solvent extraction of a spike solution containing copper, cobalt and nickel has been investigated to attain the optimal extraction conditions. The optimum conditions are found to be 7 M hydrochloric acid concentration, 5 M [H+] for 3 min shaking time with Cyanex 923 solvent conc. of 0.1 M (1:1 aqueous/organic phase ratio) at temp. 25°C. These conditions realized 92.5% copper extraction as well as 95.6% and 96.2% for cobalt and nickel extraction respectively.展开更多
A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith p...A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith programmed-temperature vaporization large-volumeinjection gas chromatography/mass spectrometry.Thewater samples were extracted by using a fully automatedmobile rack system based on x-y-z robotic techniquesusing syringes and disposable 96-well extraction plates.The method was validated for the analysis of 30 semivolatileanalytes in drinking water,groundwater,andsurface water.For a sample volume of 10 mL,the linearcalibrations ranged from 0.01 or 0.05 to 2.5μg·L^(-1),and themethod detection limits were less than 0.1μg·L^(-1).For thereagent water samples fortified at 1.0μg·L^(-1)and2.0μg·L^(-1),the obtained mean absolute recoveries were70%-130%with relative standard deviations of less than20%for most analytes.For the drinking water,groundwater,and surface water samples fortified at 1.0μg·L^(-1),theobtained mean absolute recoveries were 50%-130%withrelative standard deviations of less than 20%for mostanalytes.The new method demonstrated three advantages:1)no manipulation except the fortification of surrogatestandards prior to extraction;2)significant cost reductionassociated with sample collection,shipping,storage,andpreparation;and 3)reduced exposure to hazardous solventsand other chemicals.As a result,this new automatedmethod can be used as an effective approach for screeningand/or compliance monitoring of selected semi-volatileorganic compounds in water.展开更多
基金supported by grants from Science and Technology Planning Project of Shenzhen [No.200703079]
文摘Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wastewater purification processes do not effectively remove many chemical contaminants,
基金supported by the National Basic Re-search Program (973) of China (No. 2007CB407303)the National Natural Science Foundation of China (No.40525016)the Hi-Tech Research and Development Program (863) of China (No. 2006AA06A301).
文摘The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.
基金supported by the National Natural Science Foundation of China (51109089 and 31071862)
文摘Water erosion is the major reason for the loss of soil organic carbon in the Northeast China, which leads to the soil quality deterioration and adjacent water pollution. In this study, the effect of extraction temperature, pH value, and salt on the water extractable organic matter (WEOM) was determined by means of the UV absorbance, fluorescence excitation-emission matrix, and derived fluorescence indexes. In general, the carbon content and aromaticity of WEOM increased with the increasing of extraction temperature, with the exception that there was no significant difference in the amount at 0 and 20℃. More fluorophores, especially microbially-derived organic matter were extracted at high temperature. The pH values of extractant, including 5, 7, and 10, showed no effect on the carbon amount of WEOM, whereas the aromaticity and microbially-derived component gradually increased with the increasing of pH values. The fluorescence intensity of humic acid-like fluorophore was stronger in neutral and alkali condition than that in acidic condition. The addition of 10 mmol L-1 CaCl2 significantly decreased the carbon amount of recovered WEOM. Moreover, it significantly decreased the aromaticity of WEOM and the quantity of fulvic acid-like and humic acid-like fluorophores, whereas increased the percentage of tyrosine-like and tryptophan-like fluorophores in the total fluorophores and the amount of microbially-derived organic matter. Generally, 10 mmol L-1 KCl showed the same influence trend, but with low influence degree.
基金Supported by the National Natural Science Foundation of China(No.20028607).
文摘The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl phthalate were proved to be suitable solvents .The optimal volumetric percentage of organic solvents in the culture medium was found to be around 8%,and the favorable time for their introduction was at the exponential phase of cell growth,Paclitaxel production with the in situ extraction was ca 3-fold of that without extraction.
文摘Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on the both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, and provided useful information to soil fertility.
基金Supported by the"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA02050000)
文摘The rapid development of nuclear technology has led to more liquid organic radioactive wastes. Different from the regular aqueous radioactive wastes, these liquids possess a higher hazard potential and cannot be disposed through the conventional methods due to their radioactivity and chemical nature. Spent extraction solvent is a kind of common liquid organic radioactive wastes. In this work, tri-butyl phosphate(TBP), which is more difficult to degrade in the spent extraction solvent, was used as the model compound. Influences of reaction conditions on total organic carbon(TOC) removal and the volume percentage of each gas component under supercritical water oxidation(SCWO) were studied. The SCWO behaviors of spent extraction solvent simulants were studied under the optimal conditions derived from the TBP experiment. The SCWO experiments were studied at 400–550℃, oxidant stoichiometric ratio of 0–200%, feed concentration of 1.5%–4% and pressure of25 MPa for 15–75 s. The results show that the TOC removal of the simulants was greater than 99.7% and CH4,H2 and CO were not detected at 550℃, 25 MPa, oxidant stoichiometric ratio of 150%, feed concentration of3%, and residence time of 30 s.
文摘Seventy organic compounds including various organophosphorus esters, amines and oxygen-based ligands were investigated as extractants. The experiment results show that amines are excellent extractants for W and Mo. Their sequence of extraction ability for W is as follows: quarternary amine > tertiary amine > secondary amine > primary amine. Acidic organophosphorus extractants do not extract W, but can extract Mo with high extraction ability from the acidic solution. These extractants could provide a potential process for separating W from Mo.
文摘This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueous matrices. Orthogonal experiments were performed to optimize the operating conditions such as temperature, co solvents and so on. Under favorable conditions, high removal efficiencies can be readily achieved for a great number of representative model organic contaminants, the removal efficiencies for most of the hydrophobic contaminants were greater than 90% in a single extraction stage. Tentative effort was also done for the removal of extracted contaminants from recycled liquefied gases.
文摘A modified analytical procedure has been developed to test for 5 organic pollutants [benzophenone, 2 diisopropylnaphthalenes (DIPNs) {2,6- and 2,7-diisopropylnapthalene} and 2 hydrogenated terphenyls (HTPs) {m-terphenyl and o-terphenyl}] that can be found as residues in recycled cardboards intended for use as food packaging materials and to test for migration levels of these compounds in a food simulant (Tenax). A main objective was to develop a modified rapid and reliable method for the identification and quantification of these compounds at low concentrations. The method was based on ultrasound-assisted solvent extraction (UAE) followed by gas chromatography-mass spectrometry (GC-MS) analysis. The developed method was applied to analyze 3 commercially available recycled carton board food-packaging materials and also to study the potential migration of the 5 organic pollutants from these materials into Tenax to check if these recycled cardboards can be considered as suitable for use in direct contact with foodstuffs. The limits of detection (LODs) of standard solutions of the 5 compounds were determined at a signal-to-noise ratio of 3. The LODs and the limits of quantification (LOQs) of examined pollutants ranged between 0.005 to 0.5 mg/kg, and 0.1 to 1 mg/kg, respectively. The extremely low amounts of most contaminants that migrate from packaging materials to Tenax indicate that the recycled cardboards tested can be safely used for direct food contact applications.
文摘The extraction of the organic matter (OM) from oil shale (OS) can be achieved by several processing techniques. Normally, these techniques can remove high proportion of the organic material contained in oil shale. In this work, organic solvents extraction experiments were implemented to investigate the effect of various parameters on Jordanian El-Lajjun oil shale extractability. Results indicate that the approximate organic matter content in studied El-Lajjun oil shale is 17.48%, and 75% of OS sample particles diameters are less than 270 μm. The grain size has minor effect on shale oil extraction via organic solvents. Among eleven solvents used, the highest yield is obtained via the tetrahedrofuran (THF), whereas, with the use of solvent mixtures, the highest bitumen yield is obtained through the mixture of THF and toluene. The solvation variability is related to mode of extraction and various physicochemical factors such as extraction temperature, pressure, solvent type and mixing time, which result in different OM yield. The results indicate that the solvent extraction could be potential for shale oil extraction from Jordanian El-Lajjun OS under certain conditions of temperature, pressure and solvent type used.
文摘The organic phase extracted from interfacial crud of copper solvent extraction at Dexing Copper Mine was analyzed for its different components by combined gas chromatography mass spectroscopy. It was found that the main impurities in organic phase were methylnaphthalenes and di methylnaphthalenes which originated from commercial 260# kerosene used as diluent. It was found that the impurities containing diluent was unfavorable to phase disengagement. Methods were suggested to improve diluent properties to prevent stable interfacial emulsion.
文摘The allelopathic potential of aqueous and organic solvent extacts from Corrigiola telephiifolia Pour which is an aromatic and medicinal plant in mediterranean regions, was investigated under laboratory conditions on two plant species: Raphanus sativus and Triticum aestivum. The aqueous extract of Corrigiola telephiifolia roots had an important inhibitory effect on the seed germination of the two tested plant species. The dichloromethane and the methanol extracts significantly reduced the growth of radish roots up to 84.44% and 68.85% respectively. The butanol, the dichloromethane and the ethyl acetate extracts had a high inhibitory effect on seed germination and roots growth of wheat. The presence of saponins in butanol extracts and tanins in dichlorometane and ethyl acetate extracts may be responsible of these allelopathic activities. These results suggest that Corrigiola telephiifolia Pour have allelopathic effects and contains potent allelochemicals which should be used for weeds management.
文摘The heteroligand complex of manganese with 1,10-phenantroline and o-nitrobenzolazosalicylic acid has been investigated by spectrophotometric method. The condition of complexing and extraction, physical-chemical and analytical characteristics of this complex have been found. Complex formation is observed in the pH range 5 - 11. Extraction constant was found as 5.3 × 1012, stability constant was found as lgβK = 9.03?± 0.03. Molar absorptivity is ε = (1.36 ± 0.08) × 104 l·g﹣1·cm﹣1. Beer's law is obeyed in the range of 1.0 - 22.5 μkg manganese (II). The extraction-photometric methods of manganese determination have been worked out. The influence of diverse ions on determination of manganese (II) has been studied. The proposed method was applied successfully to determine amount of manganese in tap water.
基金Supported by the National Major Science and Technology Program for Water Pollution Control and Treatment(2010ZX07212-006)the International S&T Cooperation Program“Research of a New Combined Technology Based on Membrane Distillation Synergistic Extraction for Heavy Metal Waste Water Treatment”(2014DFA90920)
文摘We studied the separation and recovery of copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), zinc(Ⅱ), and cadmium(Ⅱ) from magnesium and calcium, using synergistic solvent extraction(SSX) in a typical hydrometallurgical waste solution. A mixture of Versatic 10 acid and Mextral 984 H, diluted with Mextral DT100, was used to obtain fundamental data on p H and distribution isotherms, as well as the kinetics of extraction and stripping. We also investigated the main effects and interactions of common solvent extraction factors: the extraction p H at equilibrium, the temperature, and the extractant concentration. The synergistic effect for extracting metals was confirmed. The results showed that the addition of Mextral 984 H enhanced the separation factors of copper, nickel, cobalt,zinc, and cadmium over magnesium and calcium. Compared with Versatic 10 acid alone, for a mixture of0.5 mol·L^(-1) Versatic 10 acid/0.5 mol·L^(-1)Mextral 984 H, Δp H50 values of copper, nickel, cobalt, zinc, and cadmium were found to be N 2.0, 3.30, 2.85, 0.95, and 1.32 p H units, respectively. The Δp H_(50)(Zn–Mg)and Δp H_(50)(Zn–Ca)values were 3.27 and 2.25, respectively, indicating easy separation and recovery of copper, nickel, zinc, cobalt,and cadmium. The extraction and stripping of copper, cobalt, zinc, and cadmium were fast, with 90% of the metal transferred in 2 min. We next studied whether the metals could be stripped from the extracted liquid selectively in sequence, by using sulfuric acid at different concentrations. The influence of the molecular structure of the oxime and carboxylic acid components upon the synergistic effects was identified by numerical analysis.Excellent separation of copper, nickel, cobalt, and zinc over magnesium and calcium was achieved with this synergistic solvent extraction system.
文摘In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities ofMn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/boioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.
文摘In most organics extraction processes, the commonly used solvents employ solely physical interactions. Therefore, for the recovery and purification of products from complex mixtures, the selectivity and/or capacity of classical solvents towards the desired solutes is usually insufficient, enforcing the need for complex and thus expensive separation schemes. Significant simplification and cost-reduction can be achieved when affinity solvents would be available that are able to recognize the solutes of interest by their molecular structure. The main development challenges to establish such affinity solvents are: Selection and incorporation of molecular recognition and complexation capabilities; Evaluation of extraction capabilities; Efficient re- covery and recycling of the affinity solvents; Implementation in industrial extraction equipment. This paper presents how these development challenges are addressed at the University of Twente, going all the way from affinity solvent design and synthesis, via high throughput screening and characterization up to pilot plant evaluation. Essential in the successful development of affinity solvents are structural cooperations with molecular chemists and custom synthesis companies for their design and synthesis. The various aspects are illustrated by several examples where newly developed environmentally benign affinity solvents appeared able to create major breakthroughs. The applications addressed involve oxygenates, sugars, and pharmaceutical ingredients, such as optical isomers and biomolecules.
文摘The methanol, acetone and 1,4-dioxan fractions of leaves of Polyalthia longifolia (Sonn.) Thw. were evaluated for antibacterial and antifungal activity. 91 clinically important strains were used for the study which were both clinical isolates as well as identified strains. Piperacillin and gentamicin were used as standards for antibacterial assay, while nystatin and flucanazole were used as standards for antifungal assay. The antibacterial activity was more pronounced against gram positive bacterial and fungal strains. Poor activity was shown against gram negative bacterial strains studied.
基金This study was supported by SRF for ROCS, SEM and Natural ScienceFoundation of Qingdao (No. 04-2-JZ-110)
文摘Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ε) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×10^4. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60℃ in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.
文摘The present work aims to evaluate and document the heavy metal distribution along Jazan coastline, southwest Saudi Arabia. Moreover, a trial for mining minerals from seawater has been performed where solvent extraction of a spike solution containing copper, cobalt and nickel has been investigated to attain the optimal extraction conditions. The optimum conditions are found to be 7 M hydrochloric acid concentration, 5 M [H+] for 3 min shaking time with Cyanex 923 solvent conc. of 0.1 M (1:1 aqueous/organic phase ratio) at temp. 25°C. These conditions realized 92.5% copper extraction as well as 95.6% and 96.2% for cobalt and nickel extraction respectively.
基金The authors thank LEAP Technologies(Carrboro,NC,USA)for providing the technical support of the automated solid-phase extraction system.
文摘A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith programmed-temperature vaporization large-volumeinjection gas chromatography/mass spectrometry.Thewater samples were extracted by using a fully automatedmobile rack system based on x-y-z robotic techniquesusing syringes and disposable 96-well extraction plates.The method was validated for the analysis of 30 semivolatileanalytes in drinking water,groundwater,andsurface water.For a sample volume of 10 mL,the linearcalibrations ranged from 0.01 or 0.05 to 2.5μg·L^(-1),and themethod detection limits were less than 0.1μg·L^(-1).For thereagent water samples fortified at 1.0μg·L^(-1)and2.0μg·L^(-1),the obtained mean absolute recoveries were70%-130%with relative standard deviations of less than20%for most analytes.For the drinking water,groundwater,and surface water samples fortified at 1.0μg·L^(-1),theobtained mean absolute recoveries were 50%-130%withrelative standard deviations of less than 20%for mostanalytes.The new method demonstrated three advantages:1)no manipulation except the fortification of surrogatestandards prior to extraction;2)significant cost reductionassociated with sample collection,shipping,storage,andpreparation;and 3)reduced exposure to hazardous solventsand other chemicals.As a result,this new automatedmethod can be used as an effective approach for screeningand/or compliance monitoring of selected semi-volatileorganic compounds in water.