In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient ext...In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.展开更多
The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of ...The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of solutions of the variational inequality prob- lem for a relaxed cocoercive and Lipschitz continuous mapping in Hilbert spaces. Then, we show that the sequence converges strongly to a common element of the above three sets under some parameter controlling conditions, which are connected with Yao, Liou, Yao[17], Takahashi[12] and many others.展开更多
Many approaches inquiring into variational inequality problems have been put forward,among which subgradient extragradient method is of great significance.A novel algorithm is presented in this article for resolving q...Many approaches inquiring into variational inequality problems have been put forward,among which subgradient extragradient method is of great significance.A novel algorithm is presented in this article for resolving quasi-nonexpansive fixed point problem and pseudomonotone variational inequality problem in a real Hilbert interspace.In order to decrease the execution time and quicken the velocity of convergence,the proposed algorithm adopts an inertial technology.Moreover,the algorithm is by virtue of a non-monotonic step size rule to acquire strong convergence theorem without estimating the value of Lipschitz constant.Finally,numerical results on some problems authenticate that the algorithm has preferable efficiency than other algorithms.展开更多
Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to e...Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.展开更多
Many approaches have been put forward to resolve the variational inequality problem. The subgradient extragradient method is one of the most effective. This paper proposes a modified subgradient extragradient method a...Many approaches have been put forward to resolve the variational inequality problem. The subgradient extragradient method is one of the most effective. This paper proposes a modified subgradient extragradient method about classical variational inequality in a real Hilbert interspace. By analyzing the operator’s partial message, the proposed method designs a non-monotonic step length strategy which requires no line search and is independent of the value of Lipschitz constant, and is extended to solve the problem of pseudomonotone variational inequality. Meanwhile, the method requires merely one map value and a projective transformation to the practicable set at every iteration. In addition, without knowing the Lipschitz constant for interrelated mapping, weak convergence is given and R-linear convergence rate is established concerning algorithm. Several numerical results further illustrate that the method is superior to other algorithms.展开更多
In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes. More...In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes. Moreover, weak convergence and R-linear convergence analyses of the algorithm are constructed under appropriate assumptions. Finally, the efficiency of the proposed algorithm is demonstrated through numerical implementations.展开更多
In this paper,we investigate a new inertial viscosity extragradient algorithm for solving variational inequality problems for pseudo-monotone and Lipschitz continuous operator and fixed point problems for quasi-nonexp...In this paper,we investigate a new inertial viscosity extragradient algorithm for solving variational inequality problems for pseudo-monotone and Lipschitz continuous operator and fixed point problems for quasi-nonexpansive mappings in real Hilbert spaces.Strong convergence theorems are obtained under some appropriate conditions on the parameters.Finally,we give some numerical experiments to show the advantages of our proposed algorithms.The results obtained in this paper extend and improve some recent works in the literature.展开更多
基金funded by the University of Science,Vietnam National University,Hanoi under project number TN.21.01。
文摘In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.
基金Supported by King Mongkut's University of Technology Thonburi.KMUTT,(CSEC Project No.E01008)supported by the Faculty of Applied Liberal Arts RMUTR Research Fund and King Mongkut's Diamond scholarship for fostering special academic skills by KMUTT
文摘The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of solutions of the variational inequality prob- lem for a relaxed cocoercive and Lipschitz continuous mapping in Hilbert spaces. Then, we show that the sequence converges strongly to a common element of the above three sets under some parameter controlling conditions, which are connected with Yao, Liou, Yao[17], Takahashi[12] and many others.
文摘Many approaches inquiring into variational inequality problems have been put forward,among which subgradient extragradient method is of great significance.A novel algorithm is presented in this article for resolving quasi-nonexpansive fixed point problem and pseudomonotone variational inequality problem in a real Hilbert interspace.In order to decrease the execution time and quicken the velocity of convergence,the proposed algorithm adopts an inertial technology.Moreover,the algorithm is by virtue of a non-monotonic step size rule to acquire strong convergence theorem without estimating the value of Lipschitz constant.Finally,numerical results on some problems authenticate that the algorithm has preferable efficiency than other algorithms.
文摘Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.
文摘Many approaches have been put forward to resolve the variational inequality problem. The subgradient extragradient method is one of the most effective. This paper proposes a modified subgradient extragradient method about classical variational inequality in a real Hilbert interspace. By analyzing the operator’s partial message, the proposed method designs a non-monotonic step length strategy which requires no line search and is independent of the value of Lipschitz constant, and is extended to solve the problem of pseudomonotone variational inequality. Meanwhile, the method requires merely one map value and a projective transformation to the practicable set at every iteration. In addition, without knowing the Lipschitz constant for interrelated mapping, weak convergence is given and R-linear convergence rate is established concerning algorithm. Several numerical results further illustrate that the method is superior to other algorithms.
文摘In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes. Moreover, weak convergence and R-linear convergence analyses of the algorithm are constructed under appropriate assumptions. Finally, the efficiency of the proposed algorithm is demonstrated through numerical implementations.
基金Supported by the NSF of China(Grant Nos.11771063,11971082 and 12171062)the Natural Science Foundation of Chongqing(Grant No.cstc2020jcyj-msxm X0455)+2 种基金Science and Technology Project of Chongqing Education Committee(Grant No.KJZD-K201900504)the Program of Chongqing Innovation Research Group Project in University(Grant No.CXQT19018)Open Fund of Tianjin Key Lab for Advanced Signal Processing(Grant No.2019ASP-TJ03)。
文摘In this paper,we investigate a new inertial viscosity extragradient algorithm for solving variational inequality problems for pseudo-monotone and Lipschitz continuous operator and fixed point problems for quasi-nonexpansive mappings in real Hilbert spaces.Strong convergence theorems are obtained under some appropriate conditions on the parameters.Finally,we give some numerical experiments to show the advantages of our proposed algorithms.The results obtained in this paper extend and improve some recent works in the literature.