We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physica...We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physical parameters, such as array period, air hole size and shape, and the incident light polarization, we verify that both global surface plasmon resonance and localized waveguide mode resonance are influential on enhancing the transmission of light through nanostructured metal films. These two resonances induce different behaviours of transmission peak shift. The transmission through the rectangular air-hole structures exhibits an obvious polarization effect dependent on the morphology. Numerical simulations are also made by a plane-wave transfer-matrix method and in good consistency with the experimental results.展开更多
In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity os...In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.展开更多
A high spatial resolution, phase-sensitive Surface Plasmon Resonance(SPR) sensor based on Extraordinary Optical Transmission(EOT) is proposed to monitor the binding of organic and biological molecules to the silver su...A high spatial resolution, phase-sensitive Surface Plasmon Resonance(SPR) sensor based on Extraordinary Optical Transmission(EOT) is proposed to monitor the binding of organic and biological molecules to the silver surface. The 2D nanohole-array configuration is well suited for dense integration in a sensor chip. The optical geometry is collinear, which simplifies the alignment with respect to the traditional Kretschmann arrangement for SPR sensing. Various design parameters of the device have been studied by simulation. The heterodyne technique is used to improve the sensitivity. The optimization results indicate that the sensor has the advantages of achieving high resolution and a wide dynamic range simultaneously.展开更多
In this paper, we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit, which consists of two connected oblique slits. The maximum transmission at reso...In this paper, we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit, which consists of two connected oblique slits. The maximum transmission at resonance can be enhanced significantly by 71.5% in comparison with the corresponding vertical slit with the same exit width. The value and position of transmission resonance peak strongly depend on the apex angle of the V-shaped slit. The optimum apex angle, at which the transmission is maximal, is sensitive to the slit width. Such phenomena can be well explained by a concrete picture in which the incident wave drives free electrons on the slit walls. Moreover, we also simply analyze the splitting of the transmission peak in the symmetry broken V-shaped slit, originating from the resonances of different parts of the V-shaped slit. We expect that our findings will be used to design the nanoscale light sources based on the metal nanoslit structures.展开更多
Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique...Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique for chemical analysis, yet its application to EC reactions is hindered by the strong attenuation of infrared (IR) light in both electrodes and electrolytes. Here we demonstrate that by incorporating appropriate sub-wavelength plasmonic structures at the metal electrode, the IR field at the EC interface can be greatly enhanced via the excitation of surface plasmon. This scheme facilitates in situ vibrational spectroscopic studies, especially using the surface-specific sum-frequency generation technique.展开更多
A new sub-wavelength metallic film lens configuration is proposed, which is embedded in a thin ideal metal film, and its near field optical properties are investigated by finite-difference time-domain (FDTD) method....A new sub-wavelength metallic film lens configuration is proposed, which is embedded in a thin ideal metal film, and its near field optical properties are investigated by finite-difference time-domain (FDTD) method. It is found that the optical transmission is greath enhanced, and the spot size can be reduced by the sub-wavelength metallic film lens in comparison with the bare aperture. This kind of lens is expected to have practical applications in the very small aperture laser (VSAL), a promising nanosource for near-field optical storage and lithography.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10525419,60736041 and 10874238)the National Key Basic Research Special Foundation of China (Grant No. 2006CB302901)
文摘We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physical parameters, such as array period, air hole size and shape, and the incident light polarization, we verify that both global surface plasmon resonance and localized waveguide mode resonance are influential on enhancing the transmission of light through nanostructured metal films. These two resonances induce different behaviours of transmission peak shift. The transmission through the rectangular air-hole structures exhibits an obvious polarization effect dependent on the morphology. Numerical simulations are also made by a plane-wave transfer-matrix method and in good consistency with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074145,10874124,and 61275028)
文摘In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.
基金Supported by the funding from the Hong Kong Research Grants Council under CERG project 411907 and41228National Basis Research Program of China(973)(No.2009CB930600)
文摘A high spatial resolution, phase-sensitive Surface Plasmon Resonance(SPR) sensor based on Extraordinary Optical Transmission(EOT) is proposed to monitor the binding of organic and biological molecules to the silver surface. The 2D nanohole-array configuration is well suited for dense integration in a sensor chip. The optical geometry is collinear, which simplifies the alignment with respect to the traditional Kretschmann arrangement for SPR sensing. Various design parameters of the device have been studied by simulation. The heterodyne technique is used to improve the sensitivity. The optimization results indicate that the sensor has the advantages of achieving high resolution and a wide dynamic range simultaneously.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174372)the Youth Foundation of the Education Department of Hunan Province,China(Grant Nos.11B134 and 10B118)
文摘In this paper, we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit, which consists of two connected oblique slits. The maximum transmission at resonance can be enhanced significantly by 71.5% in comparison with the corresponding vertical slit with the same exit width. The value and position of transmission resonance peak strongly depend on the apex angle of the V-shaped slit. The optimum apex angle, at which the transmission is maximal, is sensitive to the slit width. Such phenomena can be well explained by a concrete picture in which the incident wave drives free electrons on the slit walls. Moreover, we also simply analyze the splitting of the transmission peak in the symmetry broken V-shaped slit, originating from the resonances of different parts of the V-shaped slit. We expect that our findings will be used to design the nanoscale light sources based on the metal nanoslit structures.
文摘Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique for chemical analysis, yet its application to EC reactions is hindered by the strong attenuation of infrared (IR) light in both electrodes and electrolytes. Here we demonstrate that by incorporating appropriate sub-wavelength plasmonic structures at the metal electrode, the IR field at the EC interface can be greatly enhanced via the excitation of surface plasmon. This scheme facilitates in situ vibrational spectroscopic studies, especially using the surface-specific sum-frequency generation technique.
基金This work was supported by the Science and Technology Committee of Shanghai (No. 02ZF14109, 022261045,03QG14057, and 0359NM003)the National Natural Science Foundation of China(No. 60207005)the National "863" Project of China(No. 2002AA313030)
文摘A new sub-wavelength metallic film lens configuration is proposed, which is embedded in a thin ideal metal film, and its near field optical properties are investigated by finite-difference time-domain (FDTD) method. It is found that the optical transmission is greath enhanced, and the spot size can be reduced by the sub-wavelength metallic film lens in comparison with the bare aperture. This kind of lens is expected to have practical applications in the very small aperture laser (VSAL), a promising nanosource for near-field optical storage and lithography.