From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are...From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigensolutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h3-Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a posteriori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples.展开更多
The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel I/sin2(x- s) is discussed, and the main part of the asymptotic expansion...The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel I/sin2(x- s) is discussed, and the main part of the asymptotic expansion of error function is obtained. Based on the main part of the asymptotic expansion, a series is constructed to approach the singular point. An extrapolation algorithm is presented and the convergence rate is proved. Some numerical results are also presented to confirm the theoretical results and show the efficiency of the algorithms.展开更多
In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their al...In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance.Moreover,the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an(afne-scaled)Clarke stationary point of the original nonsmooth and nonconvex problem.Their experimental results indicate the effectiveness of the proposed algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10871034)
文摘From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigensolutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h3-Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a posteriori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples.
基金supported by National Natural Science Foundation of China(Grant Nos. 11101247 and 11201209)Shandong Provincial Natural Science Foundation of China (Grant No.ZR2011AQ020)+3 种基金a project of Shandong Province Higher Educational Science and Technology Program (GrantNo. J11LE08)supported by National Natural Science Foundation of China (GrantNo. 11101317)supported by National Basic Research Program of China (Grant No.2005CB321701)the Reward Fund of CAS for National Prize
文摘The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel I/sin2(x- s) is discussed, and the main part of the asymptotic expansion of error function is obtained. Based on the main part of the asymptotic expansion, a series is constructed to approach the singular point. An extrapolation algorithm is presented and the convergence rate is proved. Some numerical results are also presented to confirm the theoretical results and show the efficiency of the algorithms.
基金supported by the National Natural Science Foundation of China(No.12001144)Zhejiang Provincial Natural Science Foundation of China(No.LQ20A010007)NSF/DMS-2152961。
文摘In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance.Moreover,the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an(afne-scaled)Clarke stationary point of the original nonsmooth and nonconvex problem.Their experimental results indicate the effectiveness of the proposed algorithm.