From anomalies of daily data of maximum and minimum temperatures, that have been obtained as difference between the real data of every day and the average data of the corresponding day of the year in each of the 14 ob...From anomalies of daily data of maximum and minimum temperatures, that have been obtained as difference between the real data of every day and the average data of the corresponding day of the year in each of the 14 observatories of the Spanish Central Plateau (8 in North subplateau and 6 in the South subplateau) between 1961-2010, the extremely cold and warm days are determined, throughout all the year, in all the study area and the two different sub areas. We consider a day as an extremely cold day (ECD) if achieves simultaneously the following conditions: the anomaly of minimum temperature of the day is lower than the value of the P05 percentile of the series of daily anomalies of minimum temperature, and the value of the anomaly of daily maximum temperature is lower, as well, than the P05 percentile of the corresponding series of anomalies. The values of the thresholds determined by these percentiles are obtained considering the complete anomalies daily series of temperature for all the study regions. In order to establish the extremely warm days the methodology is the same but the conditions are: the anomaly of minimum temperature of the day is greater than the value of the P95 percentile of the series of daily anomalies of minimum temperature, and the value of the anomaly of daily maximum temperature is greater as well than the P95 percentile of the corresponding anomalies series. Once the extremely warm and cold days are determined, throughout the year in the period of time considered, for each zone, the corresponding series of annual frequencies are obtained. The analysis of tendency of these series indicates that in all the cases the tendency of the frequency of the extremely cold days is decreasing. Considering a linear model for the temporary behavior of the frequency, the reduce is of the order of 1 day every 10 years. In the case of the extremely warm days its annual frequency presents an increasing tendency, which indicates that the number of extremely warm days per year has been increased during the studied time interval. In agreement with the linear model of behavior, the increase is, approximately, of the order of 1 day per decade.展开更多
Weather and climate extremes often lead to dramatic losses in our society and warrant improvement of their understanding. In this study, the decadal variations in the first two dominant empirical orthogonal function (...Weather and climate extremes often lead to dramatic losses in our society and warrant improvement of their understanding. In this study, the decadal variations in the first two dominant empirical orthogonal function (EOF) modes of winter extreme cold days (WECDs) in northern China (NC) have been investigated. Results show that both EOF modes show distinct decadal variations that together explain around 24% of total variances. At the decadal time scale, the EOF1 is closely related to the decadal Arctic Oscillation (AO);the negative AO can lead to spatially consistent increase of WECDs in NC. On the other hand, the decadal EOF2 can be influenced by the decadal El Niño-Southern Oscillation (ENSO). The decadal El Niño can result in the large-scale negative sea level pressure (SLP) anomalies in the Eurasian continent west of the western NC and the positive ones over western China. The anomalous southwesterlies between the contrasted SLP anomalies can advect the warmer air from the lower latitudes to the western NC, decrease the WECDs there, and contribute to the east-west asymmetric WECD anomalies in NC. The impacts of El Niño are confirmed by the numerical simulations in the Atmospheric Model 2.1 (AM2.1) when forced by the El Niño-related sea surface temperature (SST) anomalies in the tropical Pacific.展开更多
Natural and human systems are exposed and vulnerable to climate extremes, which contributes to the repercussions of climate variability and the probability of disasters. The impacts of both natural and human-caused cl...Natural and human systems are exposed and vulnerable to climate extremes, which contributes to the repercussions of climate variability and the probability of disasters. The impacts of both natural and human-caused climate variability are reflected in the reported changes in climate extremes. Particularly at the local community levels in the majority of the regions, there is currently a dearth of information regarding the distribution, dynamics, and trends of excessive temperatures among the majority of Tanzanians. Over the years 1982-2022, this study examined trends in Tanzania’s extreme temperature over the June to August season. Based on the distinction between absolute and percentile extreme temperatures, a total of eight ETCCDI climate indices were chosen. Mann-Kendall test was used to assess the presence of trends in extreme climatic indices and the Sen’s Slope was applied to compute the extent of the trends in temperature extremes. The study showed that in most regions, there is significant increase of warm days and nights while the significant decrease of cold days and nights was evident to most areas. Moreover, nighttime warming surpasses daytime warming in the study area. The study suggests that anthropogenic influences may contribute to the warming trend observed in extreme daily minimum and maximum temperatures globally, with Tanzania potentially affected, as indicated in the current research. The overall results of this study reflect patterns observed in various regions worldwide, where warm days and nights are on the rise while cold days and nights are diminishing.展开更多
In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La ...In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Niña event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid−high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Niña)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Niña prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.展开更多
Under recent Arctic warming,boreal winters have witnessed severe cold surges over both Eurasia and North America,bringing about serious social and economic impacts.Here,we investigated the changes in daily surface air...Under recent Arctic warming,boreal winters have witnessed severe cold surges over both Eurasia and North America,bringing about serious social and economic impacts.Here,we investigated the changes in daily surface air temperature(SAT)variability during the rapid Arctic warming period of 1988/89–2015/16,and found the daily SAT variance,mainly contributed by the sub-seasonal component,shows an increasing and decreasing trend over eastern Eurasia and North America,respectively.Increasing cold extremes(defined as days with daily SAT anomalies below 1.5 standard deviations)dominated the increase of the daily SAT variability over eastern Eurasia,while decreasing cold extremes dominated the decrease of the daily SAT variability over North America.The circulation regime of cold extremes over eastern Eurasia(North America)is characterized by an enhanced high-pressure ridge over the Urals(Alaska)and surface Siberian(Canadian)high.The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region,while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation(PDO)–like sea surface temperature(SST)anomalies over the North Pacific.The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming,reduced the occurrence of extreme cold days,and possibly resulted in the decreasing trend of daily SAT variability in North America.The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America.Therefore,the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.展开更多
Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isent...Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Niña to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.展开更多
The snow-cover days over the middle and lower reaches of the Yangtze River (MLRYR) in the winter of 1670 were extracted from Chinese historical documents. By these records, the winter temperature anomalies (compare...The snow-cover days over the middle and lower reaches of the Yangtze River (MLRYR) in the winter of 1670 were extracted from Chinese historical documents. By these records, the winter temperature anomalies (compared to the mean of 1961-1990) recorded at seven meteorological stations and the regional mean winter temperature were estimated. The results show that: (1) There was an average of about 30 snow-cover days over the MLRYR region in 1670, ranging from 11-20 days in Shanghai and eastern Zhejiang to 5140 days in eastern Hunan Province. The snow-cover days averaged about 40 days in Anqing and Nan- cheng, and ranged from 30 to 40 days in Quzhou, Jingdezhen, and Nanchang; and (2) the regional mean winter temperature in 1670 was estimated to be approximately 4.0 ℃ lower than that of 1961-1990. The maximum negative anomaly of 5.6℃ occurred in Nanchang and the minimum anomaly of-2.8 ℃ was detected in Quzhou. Both of these were lower than that of the coldest winter during the instrumental observation period of 1951-2010. This research could not only provide a method to es- timate historical climate extremes, but also provide a background to understand the recent instrumentally climate extremes.展开更多
The study aimed at analyzing the trends and variability of temperature extreme</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span st...The study aimed at analyzing the trends and variability of temperature extreme</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> over </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">northeastern highlands in Tanzania, specifically over Arusha and Kilimanjaro regions. Quality controlled mean monthly, daily maximum and minimum temperature data for the period 1961 to 2020</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> obtained from Tanzania Meteorological Authority</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> were used in the study. Rclimdex and the National Climate Monitoring Products (NMCP) software</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> developed by the World Meteorological Organization (WMO)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> were used for computation of the indices at a monthly, seasonal and annual time scale. The computed indices were also subjected to trend analysis to determine their direction and magnitude of change. Extraction and assessment of the top five highest and lowest maximum and minimum temperature</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> also done. Increasing trends of temperature anomalies for seasonal and annual timescale</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> were observed for both Arusha and Kilimanjaro regions. Also, the increasing trends of warm and extreme warm days and nights and relatively increasing trends of cold and extreme cold days and nights were observed for both regions. The highest ever recorded temperatures since the establishment of the two stations were 36.3?C observed on 16</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> February 2011 and 38.6?C observed on 22</span><sup><span style="font-family:Verdana;">nd</span></sup><span style="font-family:Verdana;"> February 2005 for Arusha and Kilimanjaro respectively. These results indicate that The last two decades have been characterized by enhanced warming, which is consistent with overall global temperature trend patterns as depicted in recent IPCC reports and the report of the State of Climate in Africa.展开更多
The two leading modes of winter surface air temperature(SAT) over China during 1961–2017 are a spatially consistent pattern and a north-south dipole pattern. Based on the two leading modes, the characteristics of the...The two leading modes of winter surface air temperature(SAT) over China during 1961–2017 are a spatially consistent pattern and a north-south dipole pattern. Based on the two leading modes, the characteristics of the extreme cold and warm days in the two patterns, defined by the standard deviation larger than 1.28 or smaller than-1.28 in the time series of the two leading modes, are analyzed. With the increase of winter SAT during 1961–2017, the number of spatially consistent extreme cold days decreased and their occurrence was restricted to late December to early January, whereas the number of spatially consistent extreme warm days increased significantly in January and February. Global warming is associated with an increase in the spatially consistent extreme warm days and a decrease in spatially consistent extreme cold days, but has little relation to the sum of extreme cold and warm days of either the spatially consistent or north-south dipole pattern. The Siberian High(SH) is the main factor controlling the sum of spatially consistent extreme warm and cold days. The strong(weak) SH before(after) the1990 s corresponds to an increase(decrease) in the sum of the spatially consistent extreme warm and cold days. The occurrences of extreme south-cold-north-warm and extreme south-warm-north-cold days are related to the north-south difference of the SH.When the center of the SH is in mid-high latitudes, the extreme south-warm-north-cold(south-cold-north-warm) days occur more(less) often. During the winters of 1961–2017, the total number of extreme cold and warm days of the north-south dipole pattern changes negligibly. The North Atlantic meridional overturning circulation(AMOC) may be the main factor affecting the sum of the extreme cold and warm days of the two types of SAT pattern in China.展开更多
China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much...China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much higher impacts on the water cycle process in this region than extreme temperature and precipitation events with short durations but high intensities.Parametric and nonparametric trend analysis methods widely used in climatology and hydrology are employed to identify the temporal and spatial features of the changes in the consecutive cold,warm,dry and wet days in the NAR based on China’s 0.5°×0.5°meteorological grid datasets of daily temperature and precipitation from 1961 to 2018.This study found that(1)the consecutive cold days(Cold Spell Duration Indicator,CSDI),and the consecutive dry days(CDD)decreased,while the consecutive warm days(Warm Spell Duration Indicator,WSDI),and the consecutive wet days(CWD)increased from 1961 to 2018,(2)and the eastern Kunlun Mountains were the hot spots where all of these consecutive climate indices changed significantly,(3)and the changes in these consecutive climate indices were highly correlated with the rise in the Global Mean Land/Ocean Temperature Index.The results indicated that winters tended to warmer and dryer and summer became hotter and wetter during 1961–2018 in the NAR under the global warming,which can lead to the sustained glacier retreat and the increase in summer runoff in this region,and the eastern Kunlun Mountains are the area where could face high risks of water scarcity and floods if the changes in these climate indices continue in the future.Given the vulnerability of the socio-economic systems in the NAR to a water shortage and floods,it is most crucial to improve the strategies of water resources management,disaster prevention and risk management for this region under climate change.展开更多
The surface air temperature over the Eurasian continent has exhibited a significant cooling trend in recent decades(1990–2013), which has occurred simultaneously with Arctic warming and Arctic sea ice loss. While man...The surface air temperature over the Eurasian continent has exhibited a significant cooling trend in recent decades(1990–2013), which has occurred simultaneously with Arctic warming and Arctic sea ice loss. While many studies demonstrated that midlatitude cold extremes are linked to Arctic warming and Arctic sea ice loss, some studies suggest that they are unrelated.The causal relationship between midlatitude cold extremes and Arctic change is uncertain, and it is thus an unsolved and difficult issue. It has been widely recognized that the severity and location of midlatitude cold extremes are closely related to the persistence, location and movement of blocking systems. It might be possible that the Arctic sea ice decline or the Arctic’s warming influences midlatitude cold extremes by changing the blocking system. This paper reviews the recent research advances on the linkages between the blocking system and Arctic warming. The nonlinear multiscale interaction model of Luo et al.revealed that the magnitude of the meridional gradient(PVy) of the background potential vorticity(PV) is a key parameter that reflects changes in the dispersion and nonlinearity of the blocking system. It was found that Arctic warming played a role in reducing the dispersion of the blocking system and enhancing its nonlinearity by reducing the magnitude of PVy. A small PVyis a favorable background condition for increasing the duration of blocking events and producing midlatitude cold extremes.However, because the magnitude of PVyreflects the difference between the background PVof the Arctic high latitudes and the midlatitude continent, the occurrence of midlatitude cold extremes not only depends on an anomalous background PVover Arctic high latitudes but also on its value over the midlatitudes. Thus, Arctic warming or sea ice decline is not necessary for the occurrence of midlatitude cold extremes.展开更多
文摘From anomalies of daily data of maximum and minimum temperatures, that have been obtained as difference between the real data of every day and the average data of the corresponding day of the year in each of the 14 observatories of the Spanish Central Plateau (8 in North subplateau and 6 in the South subplateau) between 1961-2010, the extremely cold and warm days are determined, throughout all the year, in all the study area and the two different sub areas. We consider a day as an extremely cold day (ECD) if achieves simultaneously the following conditions: the anomaly of minimum temperature of the day is lower than the value of the P05 percentile of the series of daily anomalies of minimum temperature, and the value of the anomaly of daily maximum temperature is lower, as well, than the P05 percentile of the corresponding series of anomalies. The values of the thresholds determined by these percentiles are obtained considering the complete anomalies daily series of temperature for all the study regions. In order to establish the extremely warm days the methodology is the same but the conditions are: the anomaly of minimum temperature of the day is greater than the value of the P95 percentile of the series of daily anomalies of minimum temperature, and the value of the anomaly of daily maximum temperature is greater as well than the P95 percentile of the corresponding anomalies series. Once the extremely warm and cold days are determined, throughout the year in the period of time considered, for each zone, the corresponding series of annual frequencies are obtained. The analysis of tendency of these series indicates that in all the cases the tendency of the frequency of the extremely cold days is decreasing. Considering a linear model for the temporary behavior of the frequency, the reduce is of the order of 1 day every 10 years. In the case of the extremely warm days its annual frequency presents an increasing tendency, which indicates that the number of extremely warm days per year has been increased during the studied time interval. In agreement with the linear model of behavior, the increase is, approximately, of the order of 1 day per decade.
文摘Weather and climate extremes often lead to dramatic losses in our society and warrant improvement of their understanding. In this study, the decadal variations in the first two dominant empirical orthogonal function (EOF) modes of winter extreme cold days (WECDs) in northern China (NC) have been investigated. Results show that both EOF modes show distinct decadal variations that together explain around 24% of total variances. At the decadal time scale, the EOF1 is closely related to the decadal Arctic Oscillation (AO);the negative AO can lead to spatially consistent increase of WECDs in NC. On the other hand, the decadal EOF2 can be influenced by the decadal El Niño-Southern Oscillation (ENSO). The decadal El Niño can result in the large-scale negative sea level pressure (SLP) anomalies in the Eurasian continent west of the western NC and the positive ones over western China. The anomalous southwesterlies between the contrasted SLP anomalies can advect the warmer air from the lower latitudes to the western NC, decrease the WECDs there, and contribute to the east-west asymmetric WECD anomalies in NC. The impacts of El Niño are confirmed by the numerical simulations in the Atmospheric Model 2.1 (AM2.1) when forced by the El Niño-related sea surface temperature (SST) anomalies in the tropical Pacific.
文摘Natural and human systems are exposed and vulnerable to climate extremes, which contributes to the repercussions of climate variability and the probability of disasters. The impacts of both natural and human-caused climate variability are reflected in the reported changes in climate extremes. Particularly at the local community levels in the majority of the regions, there is currently a dearth of information regarding the distribution, dynamics, and trends of excessive temperatures among the majority of Tanzanians. Over the years 1982-2022, this study examined trends in Tanzania’s extreme temperature over the June to August season. Based on the distinction between absolute and percentile extreme temperatures, a total of eight ETCCDI climate indices were chosen. Mann-Kendall test was used to assess the presence of trends in extreme climatic indices and the Sen’s Slope was applied to compute the extent of the trends in temperature extremes. The study showed that in most regions, there is significant increase of warm days and nights while the significant decrease of cold days and nights was evident to most areas. Moreover, nighttime warming surpasses daytime warming in the study area. The study suggests that anthropogenic influences may contribute to the warming trend observed in extreme daily minimum and maximum temperatures globally, with Tanzania potentially affected, as indicated in the current research. The overall results of this study reflect patterns observed in various regions worldwide, where warm days and nights are on the rise while cold days and nights are diminishing.
基金supported by the national key R&D Program of China(Grant No 2018YFC1505603)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant Nos.41876012,41861144015).
文摘In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Niña event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid−high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Niña)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Niña prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.
基金This study was jointly supported by the National Key R&D Program(Grant No.2018YFC1505904)the National Natural Science Foundation of China(Grant Nos.41830969 and 41705052)the Basic Scientific Research and Operation Foundation of CAMS(Grant No.2018Z006).
文摘Under recent Arctic warming,boreal winters have witnessed severe cold surges over both Eurasia and North America,bringing about serious social and economic impacts.Here,we investigated the changes in daily surface air temperature(SAT)variability during the rapid Arctic warming period of 1988/89–2015/16,and found the daily SAT variance,mainly contributed by the sub-seasonal component,shows an increasing and decreasing trend over eastern Eurasia and North America,respectively.Increasing cold extremes(defined as days with daily SAT anomalies below 1.5 standard deviations)dominated the increase of the daily SAT variability over eastern Eurasia,while decreasing cold extremes dominated the decrease of the daily SAT variability over North America.The circulation regime of cold extremes over eastern Eurasia(North America)is characterized by an enhanced high-pressure ridge over the Urals(Alaska)and surface Siberian(Canadian)high.The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region,while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation(PDO)–like sea surface temperature(SST)anomalies over the North Pacific.The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming,reduced the occurrence of extreme cold days,and possibly resulted in the decreasing trend of daily SAT variability in North America.The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America.Therefore,the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.
基金supported by grants from the National Key R&D Program of China(Grant No.2019YFC1510201)National Natural Science Foundation of China(Grant Nos.42075052 and 42088101)the Natural Science Foundation of Jiangsu Province(Grants No.BK20211288).
文摘Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Niña to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.
基金supported by grants to the Institute of Geographic Sciences and Natural Resources Research (IGSNRR) from the Chinese Academy of Sciences (No. XDA05080100)the Ministry of Science and Technology of the People’s Republic of China (No. 2010CB950101)+1 种基金the Basic Research Project of the Ministry of Science and Technology (No. 2011FY120300)the National Natural Science Foundation of China (Nos. 41271124, 41071029)
文摘The snow-cover days over the middle and lower reaches of the Yangtze River (MLRYR) in the winter of 1670 were extracted from Chinese historical documents. By these records, the winter temperature anomalies (compared to the mean of 1961-1990) recorded at seven meteorological stations and the regional mean winter temperature were estimated. The results show that: (1) There was an average of about 30 snow-cover days over the MLRYR region in 1670, ranging from 11-20 days in Shanghai and eastern Zhejiang to 5140 days in eastern Hunan Province. The snow-cover days averaged about 40 days in Anqing and Nan- cheng, and ranged from 30 to 40 days in Quzhou, Jingdezhen, and Nanchang; and (2) the regional mean winter temperature in 1670 was estimated to be approximately 4.0 ℃ lower than that of 1961-1990. The maximum negative anomaly of 5.6℃ occurred in Nanchang and the minimum anomaly of-2.8 ℃ was detected in Quzhou. Both of these were lower than that of the coldest winter during the instrumental observation period of 1951-2010. This research could not only provide a method to es- timate historical climate extremes, but also provide a background to understand the recent instrumentally climate extremes.
文摘The study aimed at analyzing the trends and variability of temperature extreme</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> over </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">northeastern highlands in Tanzania, specifically over Arusha and Kilimanjaro regions. Quality controlled mean monthly, daily maximum and minimum temperature data for the period 1961 to 2020</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> obtained from Tanzania Meteorological Authority</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> were used in the study. Rclimdex and the National Climate Monitoring Products (NMCP) software</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> developed by the World Meteorological Organization (WMO)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> were used for computation of the indices at a monthly, seasonal and annual time scale. The computed indices were also subjected to trend analysis to determine their direction and magnitude of change. Extraction and assessment of the top five highest and lowest maximum and minimum temperature</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> also done. Increasing trends of temperature anomalies for seasonal and annual timescale</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> were observed for both Arusha and Kilimanjaro regions. Also, the increasing trends of warm and extreme warm days and nights and relatively increasing trends of cold and extreme cold days and nights were observed for both regions. The highest ever recorded temperatures since the establishment of the two stations were 36.3?C observed on 16</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> February 2011 and 38.6?C observed on 22</span><sup><span style="font-family:Verdana;">nd</span></sup><span style="font-family:Verdana;"> February 2005 for Arusha and Kilimanjaro respectively. These results indicate that The last two decades have been characterized by enhanced warming, which is consistent with overall global temperature trend patterns as depicted in recent IPCC reports and the report of the State of Climate in Africa.
基金This work was supported by the National Key R&D Program(Grant No.2016YFA0601502)the National Natural Science Foundation of China(Grant Nos.41822503&41375092).
文摘The two leading modes of winter surface air temperature(SAT) over China during 1961–2017 are a spatially consistent pattern and a north-south dipole pattern. Based on the two leading modes, the characteristics of the extreme cold and warm days in the two patterns, defined by the standard deviation larger than 1.28 or smaller than-1.28 in the time series of the two leading modes, are analyzed. With the increase of winter SAT during 1961–2017, the number of spatially consistent extreme cold days decreased and their occurrence was restricted to late December to early January, whereas the number of spatially consistent extreme warm days increased significantly in January and February. Global warming is associated with an increase in the spatially consistent extreme warm days and a decrease in spatially consistent extreme cold days, but has little relation to the sum of extreme cold and warm days of either the spatially consistent or north-south dipole pattern. The Siberian High(SH) is the main factor controlling the sum of spatially consistent extreme warm and cold days. The strong(weak) SH before(after) the1990 s corresponds to an increase(decrease) in the sum of the spatially consistent extreme warm and cold days. The occurrences of extreme south-cold-north-warm and extreme south-warm-north-cold days are related to the north-south difference of the SH.When the center of the SH is in mid-high latitudes, the extreme south-warm-north-cold(south-cold-north-warm) days occur more(less) often. During the winters of 1961–2017, the total number of extreme cold and warm days of the north-south dipole pattern changes negligibly. The North Atlantic meridional overturning circulation(AMOC) may be the main factor affecting the sum of the extreme cold and warm days of the two types of SAT pattern in China.
基金the Ministry of Science and Technology(Grant No.2018FY100502)the Young Talent Growth Fund Project of Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences(Grant No.FEYS2019016)+2 种基金the National Natural Science Foundation of China(Grant No.41171378)the“Western Light”program of the Chinese Academy of Science(Grant No.2017-XBQNXZ-B-016)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019430)。
文摘China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much higher impacts on the water cycle process in this region than extreme temperature and precipitation events with short durations but high intensities.Parametric and nonparametric trend analysis methods widely used in climatology and hydrology are employed to identify the temporal and spatial features of the changes in the consecutive cold,warm,dry and wet days in the NAR based on China’s 0.5°×0.5°meteorological grid datasets of daily temperature and precipitation from 1961 to 2018.This study found that(1)the consecutive cold days(Cold Spell Duration Indicator,CSDI),and the consecutive dry days(CDD)decreased,while the consecutive warm days(Warm Spell Duration Indicator,WSDI),and the consecutive wet days(CWD)increased from 1961 to 2018,(2)and the eastern Kunlun Mountains were the hot spots where all of these consecutive climate indices changed significantly,(3)and the changes in these consecutive climate indices were highly correlated with the rise in the Global Mean Land/Ocean Temperature Index.The results indicated that winters tended to warmer and dryer and summer became hotter and wetter during 1961–2018 in the NAR under the global warming,which can lead to the sustained glacier retreat and the increase in summer runoff in this region,and the eastern Kunlun Mountains are the area where could face high risks of water scarcity and floods if the changes in these climate indices continue in the future.Given the vulnerability of the socio-economic systems in the NAR to a water shortage and floods,it is most crucial to improve the strategies of water resources management,disaster prevention and risk management for this region under climate change.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601802)the National Natural Science Foundation of China (Grant No. 41430533)
文摘The surface air temperature over the Eurasian continent has exhibited a significant cooling trend in recent decades(1990–2013), which has occurred simultaneously with Arctic warming and Arctic sea ice loss. While many studies demonstrated that midlatitude cold extremes are linked to Arctic warming and Arctic sea ice loss, some studies suggest that they are unrelated.The causal relationship between midlatitude cold extremes and Arctic change is uncertain, and it is thus an unsolved and difficult issue. It has been widely recognized that the severity and location of midlatitude cold extremes are closely related to the persistence, location and movement of blocking systems. It might be possible that the Arctic sea ice decline or the Arctic’s warming influences midlatitude cold extremes by changing the blocking system. This paper reviews the recent research advances on the linkages between the blocking system and Arctic warming. The nonlinear multiscale interaction model of Luo et al.revealed that the magnitude of the meridional gradient(PVy) of the background potential vorticity(PV) is a key parameter that reflects changes in the dispersion and nonlinearity of the blocking system. It was found that Arctic warming played a role in reducing the dispersion of the blocking system and enhancing its nonlinearity by reducing the magnitude of PVy. A small PVyis a favorable background condition for increasing the duration of blocking events and producing midlatitude cold extremes.However, because the magnitude of PVyreflects the difference between the background PVof the Arctic high latitudes and the midlatitude continent, the occurrence of midlatitude cold extremes not only depends on an anomalous background PVover Arctic high latitudes but also on its value over the midlatitudes. Thus, Arctic warming or sea ice decline is not necessary for the occurrence of midlatitude cold extremes.