期刊文献+
共找到625篇文章
< 1 2 32 >
每页显示 20 50 100
Fast cross validation for regularized extreme learning machine 被引量:9
1
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (elm regularization theory cross validation neural networks.
下载PDF
Prediction of length-of-day using extreme learning machine 被引量:5
2
作者 Lei Yu Zhao Danning Cai Hongbing 《Geodesy and Geodynamics》 2015年第2期151-159,共9页
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ... Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple. 展开更多
关键词 Length-of-day (LOD) Predictionextreme learning machine (elm Artificial neural networks (ANN) extreme learning machine (elm Earth orientation parameters (EOP)EOP prediction comparison campaign (EOP PCC)Least squares
下载PDF
A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine 被引量:8
3
作者 Yuedong Song Pietro Liò 《Journal of Biomedical Science and Engineering》 2010年第6期556-567,共12页
The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a ... The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a time-consuming analysis of the complete length of the EEG time series data by a neurology expert. A variety of automatic epilepsy detection systems have been developed during the last ten years. In this paper, we investigate the potential of a recently-proposed statistical measure parameter regarded as Sample Entropy (SampEn), as a method of feature extraction to the task of classifying three different kinds of EEG signals (normal, interictal and ictal) and detecting epileptic seizures. It is known that the value of the SampEn falls suddenly during an epileptic seizure and this fact is utilized in the proposed diagnosis system. Two different kinds of classification models, back-propagation neural network (BPNN) and the recently-developed extreme learning machine (ELM) are tested in this study. Results show that the proposed automatic epilepsy detection system which uses sample entropy (SampEn) as the only input feature, together with extreme learning machine (ELM) classification model, not only achieves high classification accuracy (95.67%) but also very fast speed. 展开更多
关键词 Epileptic SEIZURE ELECTROENCEPHALOGRAM (EEG) SAMPLE Entropy (SampEn) Backpropagation Neural Network (BPNN) extreme learning Machine (elm) Detection
下载PDF
Constrained voting extreme learning machine and its application 被引量:5
4
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(elm) majority voting ensemble method sample based learning superheat degree(SD)
下载PDF
A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19 被引量:1
5
作者 Ahmed Reda Sherif Barakat Amira Rezk 《Computers, Materials & Continua》 SCIE EI 2022年第1期1381-1399,共19页
Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need... Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases. 展开更多
关键词 Butterfly optimization algorithm(BOA) covid-19 chest X-ray images convolutional neural network(CNN) extreme learning machine(elm) feature selection
下载PDF
Assessment of glaucoma using extreme learning machine and fractal feature analysis
6
作者 Subramaniam Kavitha Karuppusamy Duraiswamy Sakthivel Karthikeyan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第6期1255-1257,共3页
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(... Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial 展开更多
关键词 In Assessment of glaucoma using extreme learning machine and fractal feature analysis elm FIGURE
下载PDF
Misfire identification of automobile engines based on wavelet packet and extreme learning machine
7
作者 GAO Yuan LI Yi-bo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第4期384-395,共12页
Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme le... Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme learning machine(ELM)is proposed.Firstly,the original signal is decomposed by wavelet packet,and correlation coefficients between the reconstructed signal of each sub-band and the original signal as well as the energy entropy of each sample are obtained.Then,the eigenvectors established by the correlation coefficients method and the energy entropy method fused with kurtosis are inputted to the four kinds of classifiers including BP neural network,KNN classifier,support vector machine and ELM respectively for training and testing.Experimental results show that the method proposed in this paper can effectively reflect the differences that the fault produces and identify the single-cylinder misfire accurately,which has the advantages of higher accuracy and shorter training time. 展开更多
关键词 automobile engine wavelet packet correlation coefficient extreme learning machine (elm) misfire fault identification
下载PDF
基于FSSA-ELM的模拟电路故障诊断方法 被引量:1
8
作者 陈晓娟 刘禹盟 +1 位作者 曲畅 张昭华 《半导体技术》 北大核心 2024年第1期77-84,共8页
在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电... 在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电路故障数据进行特征提取,通过分数阶与麻雀搜索算法(SSA)相融合,对极限学习机(ELM)的权重和阈值进行寻优,将提取后的特征数据输入到FSSA-ELM模型中进行训练和测试。T型反馈网络反相比例运算电路诊断实例表明,FSSA-ELM的故障诊断用时相较于SSA-ELM缩短了891 s,单故障诊断准确率可达972%,比SSA-ELM和ELM分别提高了19%和28%;双故障诊断准确率可达95%,分别提高了04%和10%。该故障诊断方法准确率高、耗时短,具有较强的模拟电路故障检测能力。 展开更多
关键词 模拟电路 故障诊断 分数维度 麻雀搜索算法(SSA) 极限学习机(elm)
下载PDF
基于PSO−ELM的综采工作面液压支架姿态监测方法
9
作者 李磊 许春雨 +5 位作者 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐 《工矿自动化》 CSCD 北大核心 2024年第8期14-19,共6页
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液... 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。 展开更多
关键词 液压支架 顶梁俯仰角 姿态监测 误差补偿 粒子群优化 极限学习机 PSO−elm
下载PDF
一种基于PSO-ELM的低渗透砂岩水淹层测井识别方法
10
作者 杨波 黄长兵 +2 位作者 何岩 李垚银 李路路 《断块油气田》 CAS CSCD 北大核心 2024年第4期645-651,共7页
水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应... 水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应特征分析基础上,提出了一种利用改进粒子群优化算法(Particle Swarm Optimization,PSO)及极限学习机(Extreme Learning Machine,ELM)的水淹层识别方法。首先,利用相关系数优选6个主控因素:RD,RS,GR,SP,DEN,AC。其次,采用改进粒子群算法对极限学习机模型进行参数寻优;最后,利用优化后的模型对研究区水淹层进行预测。结果表明,利用PSO-ELM模型识别水淹层,识别符合率达到91.7%,应用效果优于ELM模型及传统识别图版,为水淹层测井识别提供了新思路。 展开更多
关键词 相关系数 粒子群优化算法 极限学习机 水淹层识别
下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
11
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度熵 天鹰优化器 极限学习机 AO-elm分类模型 特征提取
下载PDF
基于ELM神经网络的高速公路隧道运营风险评估模型
12
作者 李然 朱本成 +1 位作者 郭云鹏 李凯伦 《交通运输研究》 2024年第1期36-44,共9页
为克服传统高速公路隧道运营安全风险评估方法计算过程繁琐、运算效率低及泛化能力差等问题,采用极限学习机(Extreme Learning Machine,ELM)神经网络模型对高速公路隧道运营风险进行评估。首先,基于系统工程理论,分析了高速公路隧道运... 为克服传统高速公路隧道运营安全风险评估方法计算过程繁琐、运算效率低及泛化能力差等问题,采用极限学习机(Extreme Learning Machine,ELM)神经网络模型对高速公路隧道运营风险进行评估。首先,基于系统工程理论,分析了高速公路隧道运营风险影响因素,构建了运营风险评估指标体系。然后,以全国126个隧道典型运营事故数据为样本集,基于ELM神经网络算法,对比不同激活函数模型的分类准确率和测试时间指标,选定Sigmoid作为激活函数,训练得到高速公路隧道运营风险评估模型。最后,以该模型为核心算法开发了隧道运营风险评估系统,并依托广东省某高速公路隧道路段开展了工程应用。结果表明,所构建的风险评估模型简化了人工计算过程,可提升高速公路隧道运营风险评估的及时性和有效性。 展开更多
关键词 交通工程 隧道运营安全 极限学习机 风险评估 风险管控
下载PDF
基于PCA-PSO-ELM模型预测地震死亡人数研究 被引量:1
13
作者 陈韶金 刘子维 +2 位作者 周浩 江颖 翟笃林 《大地测量与地球动力学》 CSCD 北大核心 2024年第1期105-110,共6页
筛选42个历史地震震例,对地震震级、震源深度、震中烈度、抗震设防烈度、震中烈度与抗震设防烈度之差(ΔL)、人口密度以及发震时刻7个影响指标进行主成分分析(principal components analysis,PCA),构建粒子群优化(particle swarm optimi... 筛选42个历史地震震例,对地震震级、震源深度、震中烈度、抗震设防烈度、震中烈度与抗震设防烈度之差(ΔL)、人口密度以及发震时刻7个影响指标进行主成分分析(principal components analysis,PCA),构建粒子群优化(particle swarm optimization,PSO)极限学习机(extreme learning machine,ELM)地震死亡人数预测模型。将37个震例数据进行预处理和训练,并使用5个震例数据来检验模型的预测精度。实验结果表明,该PCA-PSO-ELM组合模型的平均误差率为10.87%,相比于PCA-ELM模型和ELM模型,其平均误差率分别降低8.70个百分点和18.38个百分点。因此,采用PCA-PSO-ELM组合模型预测地震死亡人数具有一定的可行性。 展开更多
关键词 地震死亡人数预测 主成分分析 粒子群优化 极限学习机 震后评估
下载PDF
基于PSO-ELM的变压器油纸绝缘状态无损评估方法 被引量:1
14
作者 张德文 张健 +3 位作者 曲利民 吴迪星 刘贺千 张明泽 《电力工程技术》 北大核心 2024年第3期201-208,共8页
油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用... 油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用粒子群优化-极限学习机(particle swarm optimization-extreme learning machine,PSO-ELM)算法的参数预测方法,实现了基于回复电压曲线特征参量的油纸绝缘老化与受潮状态量化评估。由油纸绝缘模型理化性能分析的对比结果可知,基于PSO-ELM方法的预测值精度远高于传统ELM方法,油纸绝缘内含水率及纸板聚合度预测的绝对误差范围分别小于±0.4%、±30。 展开更多
关键词 油浸式变压器 油纸绝缘 回复电压 粒子群优化-极限学习机(PSO-elm)算法 状态评估 无损检测
下载PDF
基于PSO-ELM组合算法的热力站负荷预测研究
15
作者 马文菁 郭晓杰 +3 位作者 曹姗姗 孙春华 夏国强 齐承英 《暖通空调》 2024年第3期157-162,共6页
提出了一种粒子群优化极限学习机(PSO-ELM)算法用于热力站负荷预测,应用粒子群(PSO)算法优化极限学习机(ELM)的输入权值和隐含层阈值。将提出的组合算法应用于天津市某小区热力站的负荷预测中,并与ELM、支持向量回归(SVR)和粒子群优化... 提出了一种粒子群优化极限学习机(PSO-ELM)算法用于热力站负荷预测,应用粒子群(PSO)算法优化极限学习机(ELM)的输入权值和隐含层阈值。将提出的组合算法应用于天津市某小区热力站的负荷预测中,并与ELM、支持向量回归(SVR)和粒子群优化支持向量回归(PSO-SVR)算法在同等条件下进行比较。结果表明,PSO-ELM在预测精度上优于其他算法;在热负荷波动较大时,表现优于PSO-SVR;在一定范围内样本容量对预测结果影响不大,PSO-ELM可遗忘更多的数据。 展开更多
关键词 热力站 热负荷预测 极限学习机 粒子群优化 负荷波动 训练集样本容量
下载PDF
基于IWOA-ELM的风功率特征参量预测方法
16
作者 蒲士彪 曾国辉 刘瑾 《上海工程技术大学学报》 CAS 2024年第3期284-290,共7页
在风力储能微电网中,提前精确地对风电场的实际输出功率进行预测,能够有效提高并网调节的稳定性。针对现有模型对风功率特征参量预测精度不高,提出一种基于IWOAELM(improved whale optimization algorithm of extreme learning machine,... 在风力储能微电网中,提前精确地对风电场的实际输出功率进行预测,能够有效提高并网调节的稳定性。针对现有模型对风功率特征参量预测精度不高,提出一种基于IWOAELM(improved whale optimization algorithm of extreme learning machine,IWOA-ELM)的风功率特征参量预测方法。通过改进鲸鱼算法优化极限学习机的参数,建立基于时间序列的IWOAELM风功率特征参量预测模型,预测未来时刻风功率的特征参量;采用均方根误差、平均绝对误差等指标综合评估模型的预测性能。试验结果表明,提出的预测方法在风速上的均方根误差和平均绝对误差为5.488、3.72%,在风向上的均方根误差和平均绝对误差为19.354、12.46%。预测精度明显高于WOA-ELM、PSO-ELM、BP、ELM等风功率预测模型。 展开更多
关键词 风力储能 改进鲸鱼算法 极限学习机 特征预测
下载PDF
基于ISSA-ELM的船舶压载水系统故障诊断研究
17
作者 王曼绮 曹辉 +1 位作者 张琦 张宝中 《舰船科学技术》 北大核心 2024年第19期36-41,共6页
为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,... 为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,获得ISSA并验证其性能;而后利用改进后的麻雀搜索算法对ELM的初始输入权重和阈值进行优化,建立基于ISSA-ELM的故障诊断模型。结果表明,ISSA-ELM模型的故障诊断精度为96.6%,比SSAELM、PSO-ELM、GWO-ELM模型高出1.8%、3.5%和2.6%,比ELM和SVM模型高出4.5%和7.1%。 展开更多
关键词 船舶压载水系统 故障诊断 极限学习机(elm) 改进麻雀搜索算法(ISSA)
下载PDF
基于ELM锂离子电池RUL预测优化方法研究
18
作者 于小芳 陈苏声 周怡 《环境技术》 2024年第6期143-147,共5页
针对传统的极限学习机ELM(Extreme Learning Machine)算法对锂离子电池剩余使用寿命RUL(Remaining Useful Life)的预测效果不准确等问题,提出通过考察循环次数基础数据导入值对预测结果的影响,及通过集成度调整即前期降低算法RUL估计的... 针对传统的极限学习机ELM(Extreme Learning Machine)算法对锂离子电池剩余使用寿命RUL(Remaining Useful Life)的预测效果不准确等问题,提出通过考察循环次数基础数据导入值对预测结果的影响,及通过集成度调整即前期降低算法RUL估计的频率,后期提高算法集成度和RUL估计的频率,进一步提高锂离子电池RUL预测的准确性。结果表明该方法具有测试时间短和误差小等优点,可为锂离子电池检测机构及生产企业提供一种更加快捷及低成本的电池剩余使用寿命或循环寿命测试方案。 展开更多
关键词 极限学习机elm 剩余使用寿命RUL 集成度调整 锂离子电池
下载PDF
改进NRS与ELM相结合在住宅需求预测中的应用
19
作者 黄旭东 狄晓涛 沈明威 《计算机系统应用》 2024年第4期302-307,共6页
针对住宅需求预测受到不同方面因素的影响且具有非线性特征等问题,本文在原始邻域粗糙集(NRS)的基础上进行改进,并与极限学习机(ELM)相结合来进行预测.首先改进算法(MNRS)解决了原始NRS无法在不同条件属性之间设定最佳邻域值的问题,根... 针对住宅需求预测受到不同方面因素的影响且具有非线性特征等问题,本文在原始邻域粗糙集(NRS)的基础上进行改进,并与极限学习机(ELM)相结合来进行预测.首先改进算法(MNRS)解决了原始NRS无法在不同条件属性之间设定最佳邻域值的问题,根据不同条件属性的邻域半径和标准差构建邻域关系矩阵;然后在输出属性重要度排序时引入Pearson相关系数,克服了条件属性之间的影响,获得最小冗余属性的约简集构成住宅需求预测指标体系;最后将构建的住宅需求指标体系输入极限学习机模型,得到准确的预测值.实验结果表明:MNRS-ELM预测模型不仅有效降低了运算复杂度,而且能够获得更高的预测精度. 展开更多
关键词 需求预测 邻域粗糙集 预测指标体系 极限学习机
下载PDF
基于ELM-AE和BP算法的极限学习机特征表示方法
20
作者 苗军 刘晓 +1 位作者 常艺茹 乔元华 《北京信息科技大学学报(自然科学版)》 2024年第1期37-41,共5页
基于极限学习机自编码器(extreme learning machine based autoencoder,ELM-AE)和误差反向传播(back propagation,BP)算法,针对ELM提出了一种改进的特征表示方法。首先,使用ELM-AE以无监督的方式学习紧凑的特征表示,即ELM-AE输出权重;其... 基于极限学习机自编码器(extreme learning machine based autoencoder,ELM-AE)和误差反向传播(back propagation,BP)算法,针对ELM提出了一种改进的特征表示方法。首先,使用ELM-AE以无监督的方式学习紧凑的特征表示,即ELM-AE输出权重;其次,利用ELM-AE输出权重来初始化BP神经网络的输入权重,然后对BP网络进行监督训练;最后,用微调的BP网络输入权重初始化ELM的输入权重参数。在MNIST数据集上的实验结果表明,采用BP算法对ELM-AE学习的参数进行约束,可以得到更紧凑且具有判别性的特征表示,有助于提高ELM的性能。 展开更多
关键词 极限学习机自编码器 误差反向传播 极限学习机
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部