Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura...Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.展开更多
Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly bein...Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.展开更多
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu...Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets.展开更多
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co...To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.展开更多
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo...A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated.展开更多
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ...Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple.展开更多
The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a ...The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a time-consuming analysis of the complete length of the EEG time series data by a neurology expert. A variety of automatic epilepsy detection systems have been developed during the last ten years. In this paper, we investigate the potential of a recently-proposed statistical measure parameter regarded as Sample Entropy (SampEn), as a method of feature extraction to the task of classifying three different kinds of EEG signals (normal, interictal and ictal) and detecting epileptic seizures. It is known that the value of the SampEn falls suddenly during an epileptic seizure and this fact is utilized in the proposed diagnosis system. Two different kinds of classification models, back-propagation neural network (BPNN) and the recently-developed extreme learning machine (ELM) are tested in this study. Results show that the proposed automatic epilepsy detection system which uses sample entropy (SampEn) as the only input feature, together with extreme learning machine (ELM) classification model, not only achieves high classification accuracy (95.67%) but also very fast speed.展开更多
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit...Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods.展开更多
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(...Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial展开更多
Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme le...Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme learning machine(ELM)is proposed.Firstly,the original signal is decomposed by wavelet packet,and correlation coefficients between the reconstructed signal of each sub-band and the original signal as well as the energy entropy of each sample are obtained.Then,the eigenvectors established by the correlation coefficients method and the energy entropy method fused with kurtosis are inputted to the four kinds of classifiers including BP neural network,KNN classifier,support vector machine and ELM respectively for training and testing.Experimental results show that the method proposed in this paper can effectively reflect the differences that the fault produces and identify the single-cylinder misfire accurately,which has the advantages of higher accuracy and shorter training time.展开更多
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat...In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.展开更多
Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need...Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases.展开更多
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)...There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.展开更多
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science and technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2).
文摘Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.
基金supported by the Natural Science Foundation of The Jiangsu Higher Education Institutions of China(Grant No.19JKB520031).
文摘Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.
文摘Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets.
基金The National Natural Science Foundation of China(No.71471060)the Natural Science Foundation of Hebei Province(No.E2018502111)。
文摘To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.
基金supported by the National Natural Science Foundation of China(51006052)the NUST Outstanding Scholar Supporting Program
文摘A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated.
基金supported by the West Light Foundation of the Chinese Academy of Sciences
文摘Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple.
文摘The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a time-consuming analysis of the complete length of the EEG time series data by a neurology expert. A variety of automatic epilepsy detection systems have been developed during the last ten years. In this paper, we investigate the potential of a recently-proposed statistical measure parameter regarded as Sample Entropy (SampEn), as a method of feature extraction to the task of classifying three different kinds of EEG signals (normal, interictal and ictal) and detecting epileptic seizures. It is known that the value of the SampEn falls suddenly during an epileptic seizure and this fact is utilized in the proposed diagnosis system. Two different kinds of classification models, back-propagation neural network (BPNN) and the recently-developed extreme learning machine (ELM) are tested in this study. Results show that the proposed automatic epilepsy detection system which uses sample entropy (SampEn) as the only input feature, together with extreme learning machine (ELM) classification model, not only achieves high classification accuracy (95.67%) but also very fast speed.
基金supported by the National Natural Science Foundation of China(6177340561751312)the Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020123)。
文摘Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods.
文摘Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial
基金Tianjin Regional Demonstration Project of Marine Economy Innovation and Development(No.2015120024000473)
文摘Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme learning machine(ELM)is proposed.Firstly,the original signal is decomposed by wavelet packet,and correlation coefficients between the reconstructed signal of each sub-band and the original signal as well as the energy entropy of each sample are obtained.Then,the eigenvectors established by the correlation coefficients method and the energy entropy method fused with kurtosis are inputted to the four kinds of classifiers including BP neural network,KNN classifier,support vector machine and ELM respectively for training and testing.Experimental results show that the method proposed in this paper can effectively reflect the differences that the fault produces and identify the single-cylinder misfire accurately,which has the advantages of higher accuracy and shorter training time.
文摘In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.
文摘Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2014 ZX03001027)
文摘There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.