期刊文献+
共找到1,509篇文章
< 1 2 76 >
每页显示 20 50 100
State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine
1
作者 Kui Chen Jiali Li +5 位作者 Kai Liu Changshan Bai Jiamin Zhu Guoqiang Gao Guangning Wu Salah Laghrouche 《Green Energy and Intelligent Transportation》 2024年第1期46-54,共9页
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith... Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%. 展开更多
关键词 Lithium-ion battery State of health estimation Grey relation analysis method particle swarm optimization algorithm extreme learning machine
原文传递
Improved PSO-Extreme Learning Machine Algorithm for Indoor Localization
2
作者 Qiu Wanqing Zhang Qingmiao +1 位作者 Zhao Junhui Yang Lihua 《China Communications》 SCIE CSCD 2024年第5期113-122,共10页
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece... Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms. 展开更多
关键词 extreme learning machine fingerprinting localization indoor localization machine learning particle swarm optimization
下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
3
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
4
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
下载PDF
Optimizing the Multi-Objective Discrete Particle Swarm Optimization Algorithm by Deep Deterministic Policy Gradient Algorithm
5
作者 Sun Yang-Yang Yao Jun-Ping +2 位作者 Li Xiao-Jun Fan Shou-Xiang Wang Zi-Wei 《Journal on Artificial Intelligence》 2022年第1期27-35,共9页
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ... Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO. 展开更多
关键词 Deep deterministic policy gradient multi-objective discrete particle swarm optimization deep reinforcement learning machine learning
下载PDF
Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis
6
作者 Hend S. Salem Mohamed A. Mead Ghada S. El-Taweel 《Journal of Computer and Communications》 2024年第3期160-183,共24页
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne... Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results. 展开更多
关键词 Big COVID-19 Data machine learning Hyperparameter optimization particle swarm optimization Computational Intelligence
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
7
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
Aero-engine Thrust Estimation Based on Ensemble of Improved Wavelet Extreme Learning Machine 被引量:3
8
作者 Zhou Jun Zhang Tianhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期290-299,共10页
Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performan... Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.However,it is a big challenge to estimate engine thrust accurately.To tackle this problem,this paper proposes an ensemble of improved wavelet extreme learning machine(EW-ELM)for aircraft engine thrust estimation.Extreme learning machine(ELM)has been proved as an emerging learning technique with high efficiency.Since the combination of ELM and wavelet theory has the both excellent properties,wavelet activation functions are used in the hidden nodes to enhance non-linearity dealing ability.Besides,as original ELM may result in ill-condition and robustness problems due to the random determination of the parameters for hidden nodes,particle swarm optimization(PSO)algorithm is adopted to select the input weights and hidden biases.Furthermore,the ensemble of the improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust.The simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and computation time. 展开更多
关键词 AERO-ENGINE THRUST estimation WAVELET extreme learning machine particle swarm optimization neural network ENSEMBLE
下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
9
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
Application of an extreme learning machine network with particle swarm optimization in syndrome classification of primary liver cancer 被引量:6
10
作者 Liang Ding Xin-you Zhang +1 位作者 Di-yao Wu Meng-ling Liua 《Journal of Integrative Medicine》 SCIE CAS CSCD 2021年第5期395-407,共13页
Objective: By optimizing the extreme learning machine network with particle swarm optimization, we established a syndrome classification and prediction model for primary liver cancer(PLC), classified and predicted the... Objective: By optimizing the extreme learning machine network with particle swarm optimization, we established a syndrome classification and prediction model for primary liver cancer(PLC), classified and predicted the syndrome diagnosis of medical record data for PLC and compared and analyzed the prediction results with different algorithms and the clinical diagnosis results. This paper provides modern technical support for clinical diagnosis and treatment, and improves the objectivity, accuracy and rigor of the classification of traditional Chinese medicine(TCM) syndromes.Methods: From three top-level TCM hospitals in Nanchang, 10,602 electronic medical records from patients with PLC were collected, dating from January 2009 to May 2020. We removed the electronic medical records of 542 cases of syndromes and adopted the cross-validation method in the remaining10,060 electronic medical records, which were randomly divided into a training set and a test set.Based on fuzzy mathematics theory, we quantified the syndrome-related factors of TCM symptoms and signs, and information from the TCM four diagnostic methods. Next, using an extreme learning machine network with particle swarm optimization, we constructed a neural network syndrome classification and prediction model that used "TCM symptoms + signs + tongue diagnosis information + pulse diagnosis information" as input, and PLC syndrome as output. This approach was used to mine the nonlinear relationship between clinical data in electronic medical records and different syndrome types. The accuracy rate of classification was used to compare this model to other machine learning classification models.Results: The classification accuracy rate of the model developed here was 86.26%. The classification accuracy rates of models using support vector machine and Bayesian networks were 82.79% and 85.84%,respectively. The classification accuracy rates of the models for all syndromes in this paper were between82.15% and 93.82%.Conclusion: Compared with the case of data processed using traditional binary inputs, the experiment shows that the medical record data processed by fuzzy mathematics was more accurate, and closer to clinical findings. In addition, the model developed here was more refined, more accurate, and quicker than other classification models. This model provides reliable diagnosis for clinical treatment of PLC and a method to study of the rules of syndrome differentiation and treatment in TCM. 展开更多
关键词 Primary liver cancer Syndrome type particle swarm extreme learning machine Fuzzy mathematics
原文传递
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
11
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 Production optimization Random forest The Bayesian algorithm Ensemble learning particle swarm optimization
下载PDF
Reconstruction and stability of Fe_(3)O_(4)(001)surface:An investigation based on particle swarm optimization and machine learning
12
作者 柳洪盛 赵圆圆 +2 位作者 邱实 赵纪军 高峻峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期27-31,共5页
Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface ... Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface structure of Fe_(3)O_(4)at atomic scale.Here,using a combination of first-principles calculations,particle swarm optimization(PSO)method and machine learning,we investigate the possible reconstruction and stability of Fe_(3)O_(4)(001)surface.The results show that besides the subsurface cation vacancy(SCV)reconstruction,an A layer with Fe vacancy(A-layer-V_(Fe))reconstruction of the(001)surface also shows very low surface energy especially at oxygen poor condition.Molecular dynamics simulation based on the iron–oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-V_(Fe)reconstruction.Our results are also instructive for the study of surface reconstruction of other metal oxides. 展开更多
关键词 surface reconstruction magnetite surface particle swarm optimization machine learning
下载PDF
Weed Classification Using Particle Swarm Optimization and Deep Learning Models
13
作者 M.Manikandakumar P.Karthikeyan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期913-927,共15页
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a cha... Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets. 展开更多
关键词 Deep learning convolutional neural network weed classification transfer learning particle swarm optimization evolutionary computing algorithm 1:Metrics Evaluation
下载PDF
Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning 被引量:1
14
作者 Annayath Maqbool Abdul Khalad Noor Zaman Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1518-1528,共11页
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros... The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys. 展开更多
关键词 Corrosion rate Friction stir processing Virtual sample generation particle swarm optimization machine learning Graphical user interface
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
15
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
16
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
17
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
下载PDF
A Particle Swarm Optimization Based Deep Learning Model for Vehicle Classification 被引量:1
18
作者 Adi Alhudhaif Ammar Saeed +4 位作者 Talha Imran Muhammad Kamran Ahmed S.Alghamdi Ahmed O.Aseeri Shtwai Alsubai 《Computer Systems Science & Engineering》 SCIE EI 2022年第1期223-235,共13页
Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact s... Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact system to assist in real-world problems and applications such as security,traffic analysis,and self-driving and autonomous vehicles.The recent revolution in the field of machine learning and artificial intelligence has provided an immense amount of support for image processing related problems and has overtaken the conventional,and handcrafted means of solving image analysis problems.In this paper,a combina-tion of pre-trained CNN GoogleNet and a nature-inspired problem optimization scheme,particle swarm optimization(PSO),was employed for autonomous vehi-cle classification.The model was trained on a vehicle image dataset obtained from Kaggle that has been suitably augmented.The trained model was classified using several classifiers;however,the Cubic SVM(CSVM)classifier was found to out-perform the others in both time consumption and accuracy(94.8%).The results obtained from empirical evaluations and statistical tests reveal that the model itself has shown to outperform the other related models not only in terms of accu-racy(94.8%)but also in terms of training time(82.7 s)and speed prediction(380 obs/sec). 展开更多
关键词 Vehicle classification intelligent transport system deep learning constrained machine learning particle swarm optimization CNN GoogleNet
下载PDF
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery 被引量:2
19
作者 Hongjun SU Shufang TIAN +3 位作者 Yue CAI Yehua SHENG Chen CHEN Maryam NAJAFIAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2017年第4期765-773,共9页
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian... This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly. 展开更多
关键词 extreme learning machine firefly algorithm parameters optimization hyperspectral image classification
原文传递
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
20
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm particle swarm optimization
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部