For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma...The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.展开更多
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
Consider I pairs of independent binomial variates x0i and x1i with corresponding parameters P0i and p1i and sample sizes n0i and n1i for i=1, …,I. Let △i = P1i-P0i be the difference of the two binomial parameters, w...Consider I pairs of independent binomial variates x0i and x1i with corresponding parameters P0i and p1i and sample sizes n0i and n1i for i=1, …,I. Let △i = P1i-P0i be the difference of the two binomial parameters, where △i’s are to be of interest and P0i’s are nuisance parameters. The null hypothesis of homogeneity on the risk difference can be written as展开更多
Based on the martingale difference divergence,a recently proposed metric for quantifying conditional mean dependence,we introduce a consistent test of U-type for the goodness-of-fit of linear models under conditional ...Based on the martingale difference divergence,a recently proposed metric for quantifying conditional mean dependence,we introduce a consistent test of U-type for the goodness-of-fit of linear models under conditional mean restriction.Methodologically,our test allows heteroscedastic regression models without imposing any condition on the distribution of the error,utilizes effectively important information contained in the distance of the vector of covariates,has a simple form,is easy to implement,and is free of the subjective choice of parameters.Theoretically,our mathematical analysis is of own interest since it does not take advantage of the empirical process theory and provides some insights on the asymptotic behavior of U-statistic in the framework of model diagnostics.The asymptotic null distribution of the proposed test statistic is derived and its asymptotic power behavior against fixed alternatives and local alternatives converging to the null at the parametric rate is also presented.In particular,we show that its asymptotic null distribution is very different from that obtained for the true error and their differences are interestingly related to the form expression for the estimated parameter vector embodied in regression function and a martingale difference divergence matrix.Since the asymptotic null distribution of the test statistic depends on data generating process,we propose a wild bootstrap scheme to approximate its null distribution.The consistency of the bootstrap scheme is justified.Numerical studies are undertaken to show the good performance of the new test.展开更多
In this paper I present a novel polynomial regression method called Finite Difference Regression for a uniformly sampled sequence of noisy data points that determines the order of the best fitting polynomial and provi...In this paper I present a novel polynomial regression method called Finite Difference Regression for a uniformly sampled sequence of noisy data points that determines the order of the best fitting polynomial and provides estimates of its coefficients. Unlike classical least-squares polynomial regression methods in the case where the order of the best fitting polynomial is unknown and must be determined from the R2 value of the fit, I show how the t-test from statistics can be combined with the method of finite differences to yield a more sensitive and objective measure of the order of the best fitting polynomial. Furthermore, it is shown how these finite differences used in the determination of the order, can be reemployed to produce excellent estimates of the coefficients of the best fitting polynomial. I show that not only are these coefficients unbiased and consistent, but also that the asymptotic properties of the fit get better with increasing degrees of the fitting polynomial.展开更多
The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will ...The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金National Natural Science Foundation of China under Grant Nos. 52178336 and 52108324Natural Science Research Project of Colleges and Universities in Jiangsu Province of China under Grant No. 18KJA560002+1 种基金the Middle-Aged&Young Science Leaders of Qinglan Project of Universities in Jiangsu Province of ChinaPostgraduate Research&Practice Innovation Program in Jiangsu Province of China under Grant No. KYCX24_1585
文摘The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.
文摘Consider I pairs of independent binomial variates x0i and x1i with corresponding parameters P0i and p1i and sample sizes n0i and n1i for i=1, …,I. Let △i = P1i-P0i be the difference of the two binomial parameters, where △i’s are to be of interest and P0i’s are nuisance parameters. The null hypothesis of homogeneity on the risk difference can be written as
基金supported by the National Natural Science Foundation of China(No.12271005 and No.11901006)Natural Science Foundation of Anhui Province(2308085Y06,1908085QA06)+2 种基金Young Scholars Program of Anhui Province(2023)Anhui Provincial Natural Science Foundation(Grant No.2008085MA08)Foundation of Anhui Provincial Education Department(Grant No.KJ2021A1523)。
文摘Based on the martingale difference divergence,a recently proposed metric for quantifying conditional mean dependence,we introduce a consistent test of U-type for the goodness-of-fit of linear models under conditional mean restriction.Methodologically,our test allows heteroscedastic regression models without imposing any condition on the distribution of the error,utilizes effectively important information contained in the distance of the vector of covariates,has a simple form,is easy to implement,and is free of the subjective choice of parameters.Theoretically,our mathematical analysis is of own interest since it does not take advantage of the empirical process theory and provides some insights on the asymptotic behavior of U-statistic in the framework of model diagnostics.The asymptotic null distribution of the proposed test statistic is derived and its asymptotic power behavior against fixed alternatives and local alternatives converging to the null at the parametric rate is also presented.In particular,we show that its asymptotic null distribution is very different from that obtained for the true error and their differences are interestingly related to the form expression for the estimated parameter vector embodied in regression function and a martingale difference divergence matrix.Since the asymptotic null distribution of the test statistic depends on data generating process,we propose a wild bootstrap scheme to approximate its null distribution.The consistency of the bootstrap scheme is justified.Numerical studies are undertaken to show the good performance of the new test.
文摘In this paper I present a novel polynomial regression method called Finite Difference Regression for a uniformly sampled sequence of noisy data points that determines the order of the best fitting polynomial and provides estimates of its coefficients. Unlike classical least-squares polynomial regression methods in the case where the order of the best fitting polynomial is unknown and must be determined from the R2 value of the fit, I show how the t-test from statistics can be combined with the method of finite differences to yield a more sensitive and objective measure of the order of the best fitting polynomial. Furthermore, it is shown how these finite differences used in the determination of the order, can be reemployed to produce excellent estimates of the coefficients of the best fitting polynomial. I show that not only are these coefficients unbiased and consistent, but also that the asymptotic properties of the fit get better with increasing degrees of the fitting polynomial.
基金National Key Research and Development Project of China,Grant/Award Number:2020YFA0711800National Natural Science Foundation of China,Grant/Award Numbers:12072363,12372373。
文摘The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.