Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which sa...Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.展开更多
In the present study,a response optimization method using Extreme Vertices Mixer Design(EVMD)approach is proposed for stress optimization in a thermomechanically processed Mg-Li-Al alloy.Experimentation was planned as...In the present study,a response optimization method using Extreme Vertices Mixer Design(EVMD)approach is proposed for stress optimization in a thermomechanically processed Mg-Li-Al alloy.Experimentation was planned as per mixed design proportions of Mg,Li and Al and process variables(i.e.temperature and strain rate).Each experiment has been performed under different conditions of factors proportions and process variables.The response,particularly stress has been considered for each experiment.The response is optimized to find an optimum condition when the contributing factors influence material characteristics in such a way,to achieve better strength,ductility and corrosion resistance.Estimated regression coefficient table for response has been observed to identify the important factors in this process and significantly high variance inflation factor has been observed.Most importantly,an optimum condition is achieved from this analysis which fulfills the experimental observations and theoretical assumptions.展开更多
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.
文摘In the present study,a response optimization method using Extreme Vertices Mixer Design(EVMD)approach is proposed for stress optimization in a thermomechanically processed Mg-Li-Al alloy.Experimentation was planned as per mixed design proportions of Mg,Li and Al and process variables(i.e.temperature and strain rate).Each experiment has been performed under different conditions of factors proportions and process variables.The response,particularly stress has been considered for each experiment.The response is optimized to find an optimum condition when the contributing factors influence material characteristics in such a way,to achieve better strength,ductility and corrosion resistance.Estimated regression coefficient table for response has been observed to identify the important factors in this process and significantly high variance inflation factor has been observed.Most importantly,an optimum condition is achieved from this analysis which fulfills the experimental observations and theoretical assumptions.