A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be use...A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.展开更多
The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the...An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the relation between deflection and pressure is analyzed. Both the mechanical model of the mesa structure diaphragm and the signal averaging effect is validated by simulation, which declares that the mesa structure diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.展开更多
In view of the problem that the sensing characteristics of the multi-mode interferometric fiber sensors cannot be accurately analyzed,an analysis method based on the fast Fourier transform(FFT)and inverse fast Fourier...In view of the problem that the sensing characteristics of the multi-mode interferometric fiber sensors cannot be accurately analyzed,an analysis method based on the fast Fourier transform(FFT)and inverse fast Fourier transform(IFFT)is proposed and demonstrated theoretically and experimentally.The suitabilities of the rectangular window function with the narrow main lobe(high spectrum resolution)and low side lobe(high main mode energy leakage)and the Hanning window function with the wide main lobe(low spectrum resolution)and high side lobe(high energy concentration)in this kind of sensor analysis are discussed,respectively.This method can not only realize the sensing performance analysis of the various modes,but also overcome the inconsistency of the different interference wavelength(dip)sensing characteristics in the conventional analysis methods.At the same time,this method is also beneficial to solve the repetitive problem of such sensors.展开更多
This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including...This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.展开更多
Optical fiber interferometric sensors based on [3×3] couplers have been used in many fields. A new technique is proposed to demodulate output signals of this kind of sensors. The technique recovers the signal of ...Optical fiber interferometric sensors based on [3×3] couplers have been used in many fields. A new technique is proposed to demodulate output signals of this kind of sensors. The technique recovers the signal of interest by fitting coefficients of elliptic (Lissajous) curves between each fiber pair. Different from other approaches, this technique eliminates the dependence on the idealization of [3×3] coupler, provides enhanced tolerance to the variance of photoelectric converters, and is anti-polarization in a certain extent. The main algorithm has been successfully demonstrated both by numerical simulation and experimental result.展开更多
Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an ...Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.展开更多
Fiber optic sensors have been widely used and studied in recent times. This paper presents operating principles and applications of fiber optic sensors namely reflectometric and interferometric fiber optic sensors. Ma...Fiber optic sensors have been widely used and studied in recent times. This paper presents operating principles and applications of fiber optic sensors namely reflectometric and interferometric fiber optic sensors. Majority of optical fiber sensors fall under these two broad categories. Both interferometric and reflectometric fiber optic sensors are becoming popular for their ease of use, flexibility, long distance sensing, and potentially noise free detection. Also, these sensors can easily be used in various applications such as structural health monitoring, perimeter intrusion detection, temperature monitoring, and other numerous applications. This paper broadly classifies fiber optic sensors into two subtypes. The paper further highlights different sensors based on their sensing resolution, range, spatial advantages, and applications.展开更多
This article reviews author's research work on fiber-optic sensors over the last twenty years. It includes two aspects: low-coherence interferometric sensors (LCI) and fiber Bragg grating (FBG) sensors. For LCI ...This article reviews author's research work on fiber-optic sensors over the last twenty years. It includes two aspects: low-coherence interferometric sensors (LCI) and fiber Bragg grating (FBG) sensors. For LCI sensors, author's work mainly focuses on the interrogation and multiplexing methods for Fizeau and Fabry-Perot interferometric sensors at the University of Kent at Canterbury (UKC), UK, and study on novel Fabry-Perot interferometric sensors and their multiplexing methods at Chongqing University (CQU) and University of Electronic Science & Technology of China (UESTC), China, respectively. For FBG sensors, a number of multiplexing schemes are proposed and demonstrated at UKC, and then novel methods for realization of multi-parameter measurement and long-distance measurement based on the FBG sensor and its combination with other optical fiber sensors are also reported at CQU & UESTC. Thus, author's study on these two topics can be diviaed into two periods, at UKC and at CQU & UESTC, China. This review is presented in such a time sequence.展开更多
The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted...The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted and embedded optical fibre sensor in concrete were addressed. Finite element (FE) modelling of selected sensor protection systems in strain-transfer efficiency from the structure to the sensing region was also studied. And experimental validation of specified sensor protection system was reported. Results obtained indicate that the protection system for the sensors performs adequately in concrete environment and there is very good correlation between results obtained by the protected fibre optic sensors and conventional electrical resistance strain gauges.展开更多
Recent developments in spectral white-light interferometry(WLI)are reviewed.Firstly,the techniques for obtaining optical spectrum are introduced.Secondly,some novel measurement techniques are reviewed,including the im...Recent developments in spectral white-light interferometry(WLI)are reviewed.Firstly,the techniques for obtaining optical spectrum are introduced.Secondly,some novel measurement techniques are reviewed,including the improved peak-to-peak WLI,improved wavelength-tracking WLI,Fourier transform WLI,and 3×3 coupler based WLI.Furthermore,a hybrid measurement for the intensity-type sensors,interferometric sensors,and fiber Bragg grating sensors is achieved.It is shown that these developments have assisted in the progress of WLI.展开更多
基金the Fundamental Research Foundation of Harbin Engineering University, (grant number HEUF 04017)
文摘A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.
文摘An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the relation between deflection and pressure is analyzed. Both the mechanical model of the mesa structure diaphragm and the signal averaging effect is validated by simulation, which declares that the mesa structure diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.
基金This work was supported by the State Key Laboratory of Mining Disaster Prevention and Control,Shandong University of Science and Technology(Grant Nos.MDPC201602 and MDPC2022ZR04)Department of Education1of Shandong Province(Grant No.J06P14)+1 种基金The Qingdao Feibo Technology Co.,Ltd.(Grant No.02040102401)Postdoctoral Research Foundation of China(Grant Nos.200902574 and 20080441150).
文摘In view of the problem that the sensing characteristics of the multi-mode interferometric fiber sensors cannot be accurately analyzed,an analysis method based on the fast Fourier transform(FFT)and inverse fast Fourier transform(IFFT)is proposed and demonstrated theoretically and experimentally.The suitabilities of the rectangular window function with the narrow main lobe(high spectrum resolution)and low side lobe(high main mode energy leakage)and the Hanning window function with the wide main lobe(low spectrum resolution)and high side lobe(high energy concentration)in this kind of sensor analysis are discussed,respectively.This method can not only realize the sensing performance analysis of the various modes,but also overcome the inconsistency of the different interference wavelength(dip)sensing characteristics in the conventional analysis methods.At the same time,this method is also beneficial to solve the repetitive problem of such sensors.
基金supported by the Key Project of Natural Science Foundation of China under Grant No. 60537040the Natural Science Foundation Project of CQ CSTC under Grant No. 2007BB3125
文摘This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60673152
文摘Optical fiber interferometric sensors based on [3×3] couplers have been used in many fields. A new technique is proposed to demodulate output signals of this kind of sensors. The technique recovers the signal of interest by fitting coefficients of elliptic (Lissajous) curves between each fiber pair. Different from other approaches, this technique eliminates the dependence on the idealization of [3×3] coupler, provides enhanced tolerance to the variance of photoelectric converters, and is anti-polarization in a certain extent. The main algorithm has been successfully demonstrated both by numerical simulation and experimental result.
基金This work was supported by the National "863" Project of China (No. 2003AA311022)the National "973" Project of China (No. 2004CB719804)the National Natural Science Foundation of China (No. 10274108)the Natural Science Foundation of Guangdong Province of China.
文摘Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.
文摘Fiber optic sensors have been widely used and studied in recent times. This paper presents operating principles and applications of fiber optic sensors namely reflectometric and interferometric fiber optic sensors. Majority of optical fiber sensors fall under these two broad categories. Both interferometric and reflectometric fiber optic sensors are becoming popular for their ease of use, flexibility, long distance sensing, and potentially noise free detection. Also, these sensors can easily be used in various applications such as structural health monitoring, perimeter intrusion detection, temperature monitoring, and other numerous applications. This paper broadly classifies fiber optic sensors into two subtypes. The paper further highlights different sensors based on their sensing resolution, range, spatial advantages, and applications.
文摘This article reviews author's research work on fiber-optic sensors over the last twenty years. It includes two aspects: low-coherence interferometric sensors (LCI) and fiber Bragg grating (FBG) sensors. For LCI sensors, author's work mainly focuses on the interrogation and multiplexing methods for Fizeau and Fabry-Perot interferometric sensors at the University of Kent at Canterbury (UKC), UK, and study on novel Fabry-Perot interferometric sensors and their multiplexing methods at Chongqing University (CQU) and University of Electronic Science & Technology of China (UESTC), China, respectively. For FBG sensors, a number of multiplexing schemes are proposed and demonstrated at UKC, and then novel methods for realization of multi-parameter measurement and long-distance measurement based on the FBG sensor and its combination with other optical fiber sensors are also reported at CQU & UESTC. Thus, author's study on these two topics can be diviaed into two periods, at UKC and at CQU & UESTC, China. This review is presented in such a time sequence.
文摘The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted and embedded optical fibre sensor in concrete were addressed. Finite element (FE) modelling of selected sensor protection systems in strain-transfer efficiency from the structure to the sensing region was also studied. And experimental validation of specified sensor protection system was reported. Results obtained indicate that the protection system for the sensors performs adequately in concrete environment and there is very good correlation between results obtained by the protected fibre optic sensors and conventional electrical resistance strain gauges.
基金This work was supported by the National Natural Scientific Foundation of China(51075037)the Program for New Century Excellent Talents(NCET)at the University of China and Chinese 863 Project(2008AA04Z406).
文摘Recent developments in spectral white-light interferometry(WLI)are reviewed.Firstly,the techniques for obtaining optical spectrum are introduced.Secondly,some novel measurement techniques are reviewed,including the improved peak-to-peak WLI,improved wavelength-tracking WLI,Fourier transform WLI,and 3×3 coupler based WLI.Furthermore,a hybrid measurement for the intensity-type sensors,interferometric sensors,and fiber Bragg grating sensors is achieved.It is shown that these developments have assisted in the progress of WLI.