期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Numerical simulation and experimental verification of a novel double-layered split die for high-pressure apparatus used for synthesizing superhard materials 被引量:1
1
作者 Zhuo Yi Wen-zhi Fu +3 位作者 Ming-zhe Li Rui Li Liang Zhao Li-yan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第3期377-385,共9页
Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. T... Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die. 展开更多
关键词 SPLIT DIE prismatic CYLINDER pressure-bearing capacity high-pressure apparatus SUPERHARD material FEM
下载PDF
Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates 被引量:9
2
作者 Jin-cheng Yu Zheng Liu +1 位作者 Yang Dong Zhi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期134-141,共8页
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope... For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature. 展开更多
关键词 Extruded Mg-Gd-Y magnesium alloy Split Hopkinson pressure Bar Dynamic compressive property Failure behavior high strain rates high temperature
下载PDF
High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar 被引量:7
3
作者 Xin Chen Xiuzhi Shi +3 位作者 Jian Zhou Enming Li Peiyong Qiu Yonggang Gou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期387-399,共13页
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso... The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period. 展开更多
关键词 high strain rate Compressive strength behavior Cemented paste backfill Split Hopkinson pressure bar TAILINGS
下载PDF
Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood(Bactris gasipaes) microparticles 被引量:1
4
作者 Edison E.Haro Jerzy A.Szpunar Akindele G.Odeshi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第3期238-249,共12页
The mechanical behavior of chonta palm wood(Bactris gasipaes) microparticles reinforced high density polyethylene(HDPE) under high strain-rate compressive and ballistic impact loading were investigated.The palm wood m... The mechanical behavior of chonta palm wood(Bactris gasipaes) microparticles reinforced high density polyethylene(HDPE) under high strain-rate compressive and ballistic impact loading were investigated.The palm wood microparticles were introduced into the HDPE via an extrusion process using parallel twin screw extruder to produce biocomposite containing 10, 20, 25, and 30 wt % chonta wood microparticles. In addition to mechanical tests, fractographic analysis was done to understand the failure mechanism in the biocomposites under dynamic and ballistic impact loads. The results indicate that both quasi-static and dynamic mechanical properties of HDPE are enhanced by reinforcement with chonta palm wood particles. The biocomposites containing 25 wt % wood microparticles exhibited the highest strength, stiffness, ballistic impact resistance and impact energy absorption capability. Introduction of microparticles of chonta palm wood as reinforcement into a polymeric matrix such as HDPE is therefore a promising method to develop biocomposites with enhanced capacity to withstand dynamic impact loading and absorb impact energy. 展开更多
关键词 HDPE 弹道 行为 盔甲 机械测试 吸收能力 密度聚乙烯 挤出过程
下载PDF
Compressive Behaviour and Failure Mechanisms of GFRP Composite at High Strain Rates
5
作者 Dejun Yin Jian Zheng +3 位作者 Chao Xiong Junhui Yin Huiyong Deng Xiaobo Su 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期184-190,共7页
Experimental investigations into the compressive behavior of glass fiber reinforced polymer(GFRP)composite at high strain rates were carried out using a split Hopkinson pressure bar(SHPB)setup.The GFRP laminates were ... Experimental investigations into the compressive behavior of glass fiber reinforced polymer(GFRP)composite at high strain rates were carried out using a split Hopkinson pressure bar(SHPB)setup.The GFRP laminates were made from E-glass fibers and epoxy resins by vacuum assisted compression molding machine.The results of the compressive tests indicated that the mechanical behavior of the GFRP composite depends highly on the strain rate.The compressive peak stress,toughness and Young's modulus of the GFRP composite increased with the increase of strain rate,while the strain level at the initial stages of damage was shortened with the increase of strain rate.In addition,the dynamic deformation behavior and failure process of the specimens were observed directly by using a high-speed camera.Following the experiments,the fracture morphologies and damage modes were examined by scanning electron microscopy(SEM)to explore the possible failure mechanisms of the specimens.The results showed that multiple failure mechanisms appeared,such as matrix crack,fiber-matrix debonding,fiber failure and shear fracture. 展开更多
关键词 glass fiber reinforced polymer(GFRP)composite SPLIT Hopkinson pressure bar(SHPB) COMPRESSIVE behavior failure mechanism high-speed camera
下载PDF
Dynamic notched semi-circle bend(NSCB) method for measuring fracture properties of rocks:Fundamentals and applications 被引量:10
6
作者 Wei Yao Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期1066-1093,共28页
Rocks are increasingly used in extreme environments characterised by high loading rates and high confining pressures.Thus the fracture properties of rocks under dynamic loading and confinements are critical in various... Rocks are increasingly used in extreme environments characterised by high loading rates and high confining pressures.Thus the fracture properties of rocks under dynamic loading and confinements are critical in various rock mechanics and rock engineering problems.Due to the transient nature of dynamic loading,the dynamic fracture tests of rocks are much more challenging than their static counterparts.Understanding the dynamic fracture behaviour of geomaterials relies significantly on suitable and reliable dynamic fracture testing methods.One of such methods is the notched semi-circle bend(NSCB)test combined with the advanced split Hopkinson pressure bar(SHPB)system,which has been recommended by the International Society for Rock Mechanics and Rock Engineering(ISRM)as the standard method for the determination of dynamic fracture toughness.The dynamic NSCB-SHPB method can provide detailed insights into dynamic fracture properties including initiation fracture toughness,fracture energy,propagation fracture toughness and fracture velocity.This review aims to fully describe the detailed principles and state-of-the-art applications of dynamic NSCB-SHPB techniques.The history and principles of dynamic NSCB-SHPB tests for rocks are outlined,and then the applications of dynamic NSCB-SHPB method(including the measurements of initiation and propagation fracture toughnesses and the limiting fracture velocity,the size effect and the digital image correlation(DIC)experiments)are discussed.Further,other applications of dynamic NSCB-SHPB techniques(i.e.the thermal,moisture and anisotropy effects on the dynamic fracture properties of geomaterials,and dynamic fracture toughness of geomaterials under pre-loading and hydrostatic pressures)are presented. 展开更多
关键词 ROCKS Split Hopkinson pressure bar(SHPB) Notched semi-circle bend(NSCB) high loading rate DYNAMIC FRACTURE
下载PDF
Dynamic behavior of frozen soil under uniaxial strain and stress conditions 被引量:9
7
作者 张海东 朱志武 +2 位作者 宋顺成 康国政 宁建国 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第2期229-238,共10页
The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at th... The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at the temperatures of -3 ℃, -8 ℃, -13℃, -17℃, -23℃, and -28℃ and with the strain rates from 900 s^-1 to 1500 s^-1. The nearly uniaxial stress-strain curves exhibit an elastic-plastic behavior, whereas the uniaxial stress-strain curves show a brittle behavior. The compressive strength of the frozen soil exhibits the positive strain rate and negative temperature sensitivity, and the final strain of the frozen soil shows the positive strain under the nearly uniaxial strain is greater rate sensitivity. The strength of the frozen soil than that under the uniaxial stress. After the negative confinement tests, the specimens are compressed, and the visible cracks are not observed. However, the specimens are catastrophically damaged after the uniaxial SHPB tests. A phenomenological model with the thermal sensitivity is established to describe the dynamic behavior of the confined frozen soil. 展开更多
关键词 frozen soil dynamic loading split Hopkinson pressure bar (SHPB) con-finement high strain rate
下载PDF
Effects of thermal treatment on physical and mechanical characteristics of coal rock 被引量:15
8
作者 YIN Tu-bing WANG Pin +2 位作者 LI Xi-bing SHU Rong-hua YE Zhou-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2336-2345,共10页
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)... To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature. 展开更多
关键词 rock mechanical property split Hopkinson pressure bar (SHPB) high temperature coal rock dynamic mechanical property
下载PDF
A waveform modification method for testing dynamic properties of rock under high temperature 被引量:6
9
作者 Tubing Yin Chao Wang +1 位作者 You Wu Bingqiang Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期833-844,共12页
In this study,a waveform modification method was proposed using a self-designed heating device combined with the split Hopkinson pressure bar(SHPB)technique for determination of dynamic behaviors of rock at high tempe... In this study,a waveform modification method was proposed using a self-designed heating device combined with the split Hopkinson pressure bar(SHPB)technique for determination of dynamic behaviors of rock at high temperature.Firstly,the temperature gradient distribution on the incident bar was measured according to the variation of elastic modulus of the bar with temperature,and the relationship between the longitudinal wave velocity and temperature of the bar was obtained based on onedimensional stress wave theory.The incident bar with a temperature gradient was divided into a series of microelements,and then the transmission coefficient of the whole incident bar was obtained.Finally,the stress wave was modified by the transmission coefficient from 25℃ to 600℃.This method was used to study the dynamic properties of rock at high temperature,which not only preserves a classical SHPB device,but also effectively ensures the accuracy of the experimental results.A dynamic Brazilian disc experiment was carried out to explore the influences of loading rate and temperature on dynamic tensile strength of sandstone at high temperature using the proposed waveform modification method. 展开更多
关键词 high temperature Split Hopkinson pressure bar(SHPB) Dynamic loading Rock materials Mechanical properties
下载PDF
Thickness Effect of Pulse Shaper on Dynamic Stress Equilibrium and Dynamic Deformation Behavior in the Polycarbonate Using SHPB Technique 被引量:21
10
作者 O.S.Lee S.H.Kim Y.H.Han 《实验力学》 CSCD 北大核心 2006年第1期51-60,共10页
The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behaviors under high strain rate loading condition. Attempts to apply the Split Hopkison Pressu... The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behaviors under high strain rate loading condition. Attempts to apply the Split Hopkison Pressure Bar in measurement on polymeric materials suffer from limitations on the maximum achievable strain and from high noise to signal ratios. This paper introduces a Split Hopkinson Pressure Bar technique, to overcome these limitations. The proposed method uses aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both data having a low noise to signal ratio and a longer input pulse at higher maximum strain. In addition, a pulse shaper technique was used for increasing the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the specimen under dynamic compression. A pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure stress equilibrium and homogeneous deformation of polycarbonate. The dynamic deformation behaviors of Polymeric material under compressive high strain rate are evaluated using the modified SHPB technique. 展开更多
关键词 厚度效应 脉冲整形器 动态应力平衡 聚碳酸酯
下载PDF
Analysis of Adiabatic Shearing Failure Mechanism for Aluminum Matrix Composites Based on Experimental and Numerical Simulation 被引量:1
11
作者 郑振兴 朱德智 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期892-896,共5页
Adiabatic shear behavior and the corresponding mechanism of TiB2/Al composites were researched by split Hopkinson pressure bar (SHPB).Results show that the flow stresses of the TiB2/Al composites exhibit softening t... Adiabatic shear behavior and the corresponding mechanism of TiB2/Al composites were researched by split Hopkinson pressure bar (SHPB).Results show that the flow stresses of the TiB2/Al composites exhibit softening tendency with the increasing of strain rates. All the composites fail in splitting and cutting with a 45 degree, and the phase transformed bands of molten aluminum are found on the adiabatic shear layers. The deformation behavior and shear localization of the TiB2/Al composites specimens were simulated by finite element code MSC.Marc. The Johnson-Cook model was used to describe the thermo-viscoplastic response of the specimen material. There was unanimous between the numerical result and the experimental result on the location of the adiabatic shear band. From the numerical simulation and experiment, it was concluded that the instantaneous failure of the composite was ascribed due to the local low strength area where the formation of adiabatic shear band was, and the stress condition had significant effect on the initiation and propagation of adiabatic shear band (ASB). 展开更多
关键词 metal matrix composites split Hopkinson pressure bar high strain-rate adiabatic shear band Johnson-Cook model
下载PDF
Indirect Tensile Characterization of Graphite Platelet Reinforced Vinyl Ester Nanocomposites at High-Strain Rate 被引量:1
12
作者 Brahmananda Pramanik P. Raju Mantena +1 位作者 Tezeswi Tadepalli Arunachalam M. Rajendran 《Open Journal of Composite Materials》 2014年第4期201-214,共14页
An indirect tensile testing method is proposed for characterizing low strength graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. In this technique, the traditional Brazilian disk (diametrica... An indirect tensile testing method is proposed for characterizing low strength graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. In this technique, the traditional Brazilian disk (diametrical compression) test method for brittle materials is utilized along with conventional split-Hopkinson pressure bars (SHPB) for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. To eliminate the complexities of conventional strain gage application, a non-contact Laser Occluding Expansion Gage (LOEG) has been adapted for measuring the diametrical transverse expansion of the specimen under high-strain rate diametrical compressive loading. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of xGnP (exfoliated graphite nanoplatelets) reinforced and additional CTBN (Carboxyl Terminated Butadiene Nitrile) toughened vinyl ester based nanocomposites. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses shows the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. The contribution of reinforcement to the tensile properties of the candidate materials is presented. 展开更多
关键词 Split Hopkinson pressure BARS high-Strain Rate Tensile TEST BRAZILIAN Disk TEST Method Laser Occluding Expansion Gage NANOCOMPOSITES
下载PDF
Stress-Strain Behavior of Nylon-Carbon Composite Subjected to High Strain Rate Impact Loading
13
作者 Noori Hassoon Mohammed A1-Saadi 《Journal of Energy and Power Engineering》 2015年第9期791-795,共5页
The aim of this study is to investigate the dynamic stress-strain relation for the hybrid composite (nylon +carbon). Three groups of specimens are used with different number of carbon layers. The specimens were sub... The aim of this study is to investigate the dynamic stress-strain relation for the hybrid composite (nylon +carbon). Three groups of specimens are used with different number of carbon layers. The specimens were subjected to high velocity impact with different strain rates. SHPB (split Hopkinson pressure bar) is used in this investigation. The results show that, the stress-strain relation various with the strain rate. The maximum stress and strain are proportion directly with the strain rate. Also, the results revealed that, as the number of carbon layer increased, the maximum strain decreased. 展开更多
关键词 high strain rate split Hopkinson pressure bar COMPOSITE high strain rate impact.
下载PDF
高温下玄武岩纤维增强地质聚合物混凝土的动态压缩力学行为 被引量:1
14
作者 冷玲倻 张鹏飞 梁文文 《硅酸盐通报》 CAS 北大核心 2024年第3期914-921,共8页
为研究高温下玄武岩纤维增强地质聚合物混凝土(BFRGC)的动态压缩力学行为,本文制备了纤维体积掺量为0%、0.1%、0.2%、0.3%的BFRGC试件,并对其进行了不同温度(20、200、400、600、800℃)下的动态冲击试验。结果表明:BFRGC试件静态抗压强... 为研究高温下玄武岩纤维增强地质聚合物混凝土(BFRGC)的动态压缩力学行为,本文制备了纤维体积掺量为0%、0.1%、0.2%、0.3%的BFRGC试件,并对其进行了不同温度(20、200、400、600、800℃)下的动态冲击试验。结果表明:BFRGC试件静态抗压强度、动态抗压强度和比能量吸收具有明显的温度强化效应和高温损伤效应,峰值应变表现出显著的温度塑化效应。BFRGC试件的静态抗压强度、动态抗压强度的温度阀值为400℃。随着温度的升高,BFRGC试件的静态抗压强度、动态抗压强度和比能量吸收均先增大后减小,峰值应变不断增大。掺加适量的玄武岩纤维可以提高常温及高温下地质聚合物混凝土的静态抗压强度和动态力学性能,且其最佳掺量为0.1%。 展开更多
关键词 地质聚合物混凝土 玄武岩纤维 动态力学性能 高温 分离式霍普金森压杆(SHPB)
下载PDF
基于超高压处理的猕猴桃原浆制备研究
15
作者 卢亚婷 高欣羽 罗仓学 《保鲜与加工》 CAS 北大核心 2024年第3期34-39,共6页
为优化猕猴桃超高压灭菌条件下原浆制作工艺,对3种不同原浆制作工艺分别进行单因素优化试验,筛选出两种产品色泽和稳定性较好的工艺,并对这两种工艺所制作样品进行4℃储藏40 d的品质对比。结果表明,在最大程度保留猕猴桃原浆绿色,提高... 为优化猕猴桃超高压灭菌条件下原浆制作工艺,对3种不同原浆制作工艺分别进行单因素优化试验,筛选出两种产品色泽和稳定性较好的工艺,并对这两种工艺所制作样品进行4℃储藏40 d的品质对比。结果表明,在最大程度保留猕猴桃原浆绿色,提高其稳定性的条件下,3种工艺的优选次序为:对辊式挤压制浆>胶体磨制浆>高压微射流制浆;与胶体磨工艺相比,对辊式挤压工艺制作的产品在4℃条件下储藏30 d内无明显的自然分层,产品VC损失较少;优化后的制浆工艺为:采用对辊式挤压工艺,挤压次数为1次。按照该工艺制作的猕猴桃原浆色泽相对均一,以青绿色为主,VC含量为40~50 mg/100 g。 展开更多
关键词 猕猴桃原浆 高压微射流 对辊式挤压 超高压处理 强化分层率
下载PDF
HMX单晶的动态力学行为及断裂失效机理
16
作者 郭洪福 郑雄伟 +2 位作者 马田 豆永鹏 彭军 《兵工学报》 EI CAS CSCD 北大核心 2024年第S01期296-301,共6页
为研究含能单晶的断裂力学行为,对含能HMX单晶进行动态单轴压缩实验。采用丙酮溶剂培养出单边尺寸大于3mm的大单晶,采用抛光机将不规则的单晶研磨成可用于分离式Hopkinson动态压杆实验的尺寸为?5.3 mm×2 mm的圆柱体。以2 000 s^(-1... 为研究含能单晶的断裂力学行为,对含能HMX单晶进行动态单轴压缩实验。采用丙酮溶剂培养出单边尺寸大于3mm的大单晶,采用抛光机将不规则的单晶研磨成可用于分离式Hopkinson动态压杆实验的尺寸为?5.3 mm×2 mm的圆柱体。以2 000 s^(-1)速率对样品进行加载并配合高速摄影获取其加载过程中的力学响应图像。实验结果表明:在高应变率加载条件下HMX呈脆性断裂状态,样品在10μs时应力达到最大值;单晶颗粒碎裂后存在大量的解理断口,碎片主要集中于粒径10~1 000μm的小颗粒;破碎后的炸药,细观上不再连续,在进一步的加载过程中,碎片之间的接触面容易形成热点。 展开更多
关键词 HMX 断裂 高速摄影 分离式Hopkinson动态压杆
下载PDF
粉煤灰高性能混凝土动态压缩性能试验研究
17
作者 卢俊平 王亚 +2 位作者 刘磊 张成良 徐泽辉 《混凝土》 CAS 北大核心 2024年第8期55-62,共8页
为研究冲击荷载下高性能混凝土抗压性能,利用分离式霍普金森压杆对C30、C40、C50强度等级的普通混凝土(NC)和高性能混凝土(HPC)进行了5种应变率下的动态压缩性能试验,并与各类试件的静态抗压强度、弹性模量进行对比分析,还采用LS-DYNA... 为研究冲击荷载下高性能混凝土抗压性能,利用分离式霍普金森压杆对C30、C40、C50强度等级的普通混凝土(NC)和高性能混凝土(HPC)进行了5种应变率下的动态压缩性能试验,并与各类试件的静态抗压强度、弹性模量进行对比分析,还采用LS-DYNA有限元软件对冲击压缩试验进行了模拟。结果表明HPC的静态抗压强度和弹性模量均明显优于NC,HPC更加密实,抵抗变形能力更强。随应变率增加,混凝土动态抗压强度提高,提高幅度越大其破坏程度更严重。NC和HPC的动态抗压强度、动态弹性模量均有明显的应变率效应。受粉煤灰和硅灰的影响,HPC的弹性模量增长因子随应变率的变化不大。模拟结果反映了HPC-50抵抗动态冲击压缩的能力优于NC-50,模拟的破坏规律与实际试验中的破坏规律具有一致性。 展开更多
关键词 高性能混凝土 动态压缩性能 动态增长因子 分离式霍普金森杆
下载PDF
c'BN超高压颗粒破碎规律及其对PcBN烧结特性影响
18
作者 谢辉 邓福铭 +2 位作者 尹自信 沈倩倩 冯飞 《硬质合金》 CAS 2024年第2期113-122,共10页
以立方氮化硼与碳/氮化物陶瓷微粉为初始颗粒,分别设计了常温超高压挤压与高温高压烧结实验,利用激光粒度分析仪、SEM、XRD等进行表征。研究表明,超高压挤压1min即完成了颗粒破碎与86.47%以上的致密化过程,颗粒破碎机制为脆性断裂与晶... 以立方氮化硼与碳/氮化物陶瓷微粉为初始颗粒,分别设计了常温超高压挤压与高温高压烧结实验,利用激光粒度分析仪、SEM、XRD等进行表征。研究表明,超高压挤压1min即完成了颗粒破碎与86.47%以上的致密化过程,颗粒破碎机制为脆性断裂与晶内裂纹,破碎后极易团聚且流动性较差;cBN颗粒破碎率与晶粒尺寸正相关;cBN与陶瓷微粉均具有超高压与高温高压的两次颗粒致密化过程。颗粒破碎形成的活性表面与细颗粒有助于烧结致密化,但颗粒破碎引起的裂纹等“内伤”亦会对烧结体性能产生负面影响。 展开更多
关键词 超高压 挤压破碎 CBN 团聚性 压缩率
下载PDF
冲击荷载下高强混凝土动力特性及破碎特征研究
19
作者 韩长君 周海龙 王海龙 《振动与冲击》 EI CSCD 北大核心 2024年第11期320-326,共7页
为探究粉煤灰替代率和细集料类型对高强混凝土冲击压缩性能的影响,以粉煤灰替代水泥比例为0、10%、15%、20%、25%为胶凝材料,玄武岩机制砂和天然砂为细集料配制C80高强混凝土,利用分离式霍普金森杆对其开展冲击压缩试验,计算破碎体分形... 为探究粉煤灰替代率和细集料类型对高强混凝土冲击压缩性能的影响,以粉煤灰替代水泥比例为0、10%、15%、20%、25%为胶凝材料,玄武岩机制砂和天然砂为细集料配制C80高强混凝土,利用分离式霍普金森杆对其开展冲击压缩试验,计算破碎体分形维数量化混凝土破碎特征,并借助扫描电镜(SEM)分析混凝土微观形貌。结果表明:机制砂混凝土(MSC)的峰值应力和韧性均高于天然砂混凝土(NSC);随着粉煤灰替代率增加,混凝土峰值应变逐渐降低;当粉煤灰替代率10%时,混凝土的峰值应力和韧性均达到最高值,且破碎体分形维数最小、平均块径最大、综合表现的破碎特征最简单;与未掺粉煤灰组混凝土相比,粉煤灰替代率10%时混凝土的微观形貌致密,孔隙数量减少,整体密实度提升。 展开更多
关键词 粉煤灰 玄武岩机制砂 高强混凝土 分离式霍普金森压杆(SHPB) 冲击压缩 分形维数
下载PDF
高温后水泥砂浆-花岗岩复合层动态力学性能试验研究
20
作者 顾琳琳 尹克飞 +2 位作者 王振 吴汩 何鹏涛 《振动与冲击》 EI CSCD 北大核心 2024年第11期176-184,共9页
为研究高温后水泥砂浆-花岗岩复合层的动态力学特性,采用分离式霍普金森压杆(SHPB)设备,以温度和加载速率为可变参数,开展了复合层试件动态压缩试验及静压对比试验。结果表明:动态抗压强度和动态强度增长因子(dynamic intensity factor,... 为研究高温后水泥砂浆-花岗岩复合层的动态力学特性,采用分离式霍普金森压杆(SHPB)设备,以温度和加载速率为可变参数,开展了复合层试件动态压缩试验及静压对比试验。结果表明:动态抗压强度和动态强度增长因子(dynamic intensity factor, DIF)均有显著的应变率效应,应变率低于45 s~(-1)时DIF随温度升高单调减小,高于45 s~(-1)后DIF随温度升高先减小后增大;高温后复合层界面黏结减弱,随着温度升高水泥砂浆和花岗岩破坏形态差异化增大;复合层试件削波耗能特性表现出加载速率低敏感和温度高敏感。峰值应力比和耗能率不随加载速率的改变而发生明显变化,高温后复合层等效波阻抗下降,削波能力得到增强而耗能效果受到削弱;随着温度升高,入射能更多地转化为反射能,透射能及破坏耗能的占比下降。 展开更多
关键词 分离式霍普金森压杆(SHPB) 复合层 高温 冲击荷载 动态力学性能
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部