The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with vo...The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with void were studied by this physical photoplasic simulation method. Some important informations obtained from the simulation experiment are helpful to understand the deformation law and the charac- teristics of material flowing.The validity of the physical simulation method and the importance of com- bining the physical simulation method with numerical simulation method together were proposed in the paper.展开更多
To control the multicomponent reactions in extrusion, reactive-mixing flow in a co-rotating twin screw extruder was numerically studied in the present paper. Effects of initial species distribution, rotating speed and...To control the multicomponent reactions in extrusion, reactive-mixing flow in a co-rotating twin screw extruder was numerically studied in the present paper. Effects of initial species distribution, rotating speed and flow rate on a competitive-parallel reaction were investigated and the relationship between mixing and reactions was discussed from the view of chemical reaction engineering. The simulation results show the studied operational parameters, which determine residence time distribution, earliness of mixing and segregation degree of reactive-mixing flows, affect the local species concentration and reaction time and hence have significant influences on the reaction extent. Orthogonal test was adopted to clarify the significance of operational parameters.The analysis shows that initial species distribution and flow rate are the most important factors in the control of reaction extent, and effect of rotating speed is conditional depending on the micro-mixing status of the fluid.展开更多
A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be...A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be saved. A new technology used for decompressing by a multi-steps dynamical mode is put forward, which makes it possible to decompress the large flow-volume high-pressure oil in the main cylinders. In addition, a method for realizing the fixed mandrel process by hydraulic support is proposed and its control equation is established. Pre-tightening frame tests are carried out by over-operating pressure on 100 MN aluminium extrusion press with oil-driven double action, which is developed based on the above key techniques and is the largest press so far in the world, and the results show that the frame structure designed is reasonable and reliable, and the modem design method used is an useful tool for designing large and out-size heavy plastic forming machinery. The results of decompressing curve in main cylinder and noise inspection indicate that multi-steps dynamical mode for decompressing the large flow-volume high pressure oil is valid and reliable. Meanwhile, the fixed mandrel process is well realized based on the control equation. These key techniques have been used in the development of 125 MN aluminium extrusion press with oil-driven double action.展开更多
文摘The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with void were studied by this physical photoplasic simulation method. Some important informations obtained from the simulation experiment are helpful to understand the deformation law and the charac- teristics of material flowing.The validity of the physical simulation method and the importance of com- bining the physical simulation method with numerical simulation method together were proposed in the paper.
基金Supported by National Program on Key Basic Research Project(2011CB606100)the National Natural Science Foundation of China(21406059)
文摘To control the multicomponent reactions in extrusion, reactive-mixing flow in a co-rotating twin screw extruder was numerically studied in the present paper. Effects of initial species distribution, rotating speed and flow rate on a competitive-parallel reaction were investigated and the relationship between mixing and reactions was discussed from the view of chemical reaction engineering. The simulation results show the studied operational parameters, which determine residence time distribution, earliness of mixing and segregation degree of reactive-mixing flows, affect the local species concentration and reaction time and hence have significant influences on the reaction extent. Orthogonal test was adopted to clarify the significance of operational parameters.The analysis shows that initial species distribution and flow rate are the most important factors in the control of reaction extent, and effect of rotating speed is conditional depending on the micro-mixing status of the fluid.
基金This project is supported by National Science Foundation of China for Distinguished Young Scholars (No. 50225518)Foundation of China for Key New Product (No. 2004ED850025)Post-Doctoral Foundation of China Heavy Machinery Research Institute (No. K055412).
文摘A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be saved. A new technology used for decompressing by a multi-steps dynamical mode is put forward, which makes it possible to decompress the large flow-volume high-pressure oil in the main cylinders. In addition, a method for realizing the fixed mandrel process by hydraulic support is proposed and its control equation is established. Pre-tightening frame tests are carried out by over-operating pressure on 100 MN aluminium extrusion press with oil-driven double action, which is developed based on the above key techniques and is the largest press so far in the world, and the results show that the frame structure designed is reasonable and reliable, and the modem design method used is an useful tool for designing large and out-size heavy plastic forming machinery. The results of decompressing curve in main cylinder and noise inspection indicate that multi-steps dynamical mode for decompressing the large flow-volume high pressure oil is valid and reliable. Meanwhile, the fixed mandrel process is well realized based on the control equation. These key techniques have been used in the development of 125 MN aluminium extrusion press with oil-driven double action.