One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is att...One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is attended. This paper proposes a method which can automatically detect eye in extensive range of images with different conditions. In the proposed method, first an image is enhanced by morphological operations then region of face is detected by hybrid projection function. To identify window of eye, vertical edge dominance map is used. The authors' method uses elliptical mask on eye image to detect center of pupil. The mask scans eye image to find minimum gray level because pupil is darkest part in eye image compared with 3 well-known methods. The accuracy of 99.53% on this This method has implemented on JAFFE face database and database confirms efficiency of the proposed method.展开更多
This paper presents an eye and iris detection algorithm for human facial images. The authors combine three features of the eye to develop the algorithm:1) the pixels surrounding the eyes are more variable than other...This paper presents an eye and iris detection algorithm for human facial images. The authors combine three features of the eye to develop the algorithm:1) the pixels surrounding the eyes are more variable than other parts of the face; 2) eye pixels are darker than their neighbors; 3) eyes often exhibit radial symmetric properties. Through the first feature,two rough regions of both eyes are detected on the face. Eye masks are then formed based on the second feature,and a fast radial symmetry transform is applied to the two rough regions of both eyes. Finally,accurate iris centers are located by searching the maximum value of the radial symmetry transform results. Using 450 human facial images from the Caltech face database,experiments show that the success rate of the proposed method is 91.7%. The effectiveness of the method was also verified through detection of video frames.展开更多
The pandemic situation in 2020 brought about a‘digitized new normal’and created various issues within the current education systems.One of the issues is the monitoring of students during online examination situation...The pandemic situation in 2020 brought about a‘digitized new normal’and created various issues within the current education systems.One of the issues is the monitoring of students during online examination situations.A system to determine the student’s eye gazes during an examination can help to eradicate malpractices.In this work,we track the users’eye gazes by incorporating twelve facial landmarks around both eyes in conjunction with computer vision and the HAAR classifier.We aim to implement eye gaze detection by considering facial landmarks with two different Convolutional Neural Network(CNN)models,namely the AlexNet model and the VGG16 model.The proposed system outperforms the traditional eye gaze detection system which only uses computer vision and the HAAR classifier in several evaluation metric scores.The proposed system is accurate without the need for complex hardware.Therefore,it can be implemented in educational institutes for the fair conduct of examinations,as well as in other instances where eye gaze detection is required.展开更多
This study explores the potential of Artificial Intelligence(AI)in early screening and prognosis of Dry Eye Disease(DED),aiming to enhance the accuracy of therapeutic approaches for eye-care practitioners.Despite the ...This study explores the potential of Artificial Intelligence(AI)in early screening and prognosis of Dry Eye Disease(DED),aiming to enhance the accuracy of therapeutic approaches for eye-care practitioners.Despite the promising opportunities,challenges such as diverse diagnostic evidence,complex etiology,and interdisciplinary knowledge integration impede the interpretability,reliability,and applicability of AI-based DED detection methods.The research conducts a comprehensive review of datasets,diagnostic evidence,and standards,as well as advanced algorithms in AI-based DED detection over the past five years.The DED diagnostic methods are categorized into three groups based on their relationship with AI techniques:(1)those with ground truth and/or comparable standards,(2)potential AI-based methods with significant advantages,and(3)supplementary methods for AI-based DED detection.The study proposes suggested DED detection standards,the combination of multiple diagnostic evidence,and future research directions to guide further investigations.Ultimately,the research contributes to the advancement of ophthalmic disease detection by providing insights into knowledge foundations,advanced methods,challenges,and potential future perspectives,emphasizing the significant role of AI in both academic and practical aspects of ophthalmology.展开更多
文摘One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is attended. This paper proposes a method which can automatically detect eye in extensive range of images with different conditions. In the proposed method, first an image is enhanced by morphological operations then region of face is detected by hybrid projection function. To identify window of eye, vertical edge dominance map is used. The authors' method uses elliptical mask on eye image to detect center of pupil. The mask scans eye image to find minimum gray level because pupil is darkest part in eye image compared with 3 well-known methods. The accuracy of 99.53% on this This method has implemented on JAFFE face database and database confirms efficiency of the proposed method.
基金Research Project of Pilot Fatigue Monitoring System Based on Computer Vision (No.MHR06Z16)
文摘This paper presents an eye and iris detection algorithm for human facial images. The authors combine three features of the eye to develop the algorithm:1) the pixels surrounding the eyes are more variable than other parts of the face; 2) eye pixels are darker than their neighbors; 3) eyes often exhibit radial symmetric properties. Through the first feature,two rough regions of both eyes are detected on the face. Eye masks are then formed based on the second feature,and a fast radial symmetry transform is applied to the two rough regions of both eyes. Finally,accurate iris centers are located by searching the maximum value of the radial symmetry transform results. Using 450 human facial images from the Caltech face database,experiments show that the success rate of the proposed method is 91.7%. The effectiveness of the method was also verified through detection of video frames.
基金funded by the“Intelligent Recognition Industry Service Research Center”from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan.Grant Number:N/A and the APC was funded by the aforementioned Project.
文摘The pandemic situation in 2020 brought about a‘digitized new normal’and created various issues within the current education systems.One of the issues is the monitoring of students during online examination situations.A system to determine the student’s eye gazes during an examination can help to eradicate malpractices.In this work,we track the users’eye gazes by incorporating twelve facial landmarks around both eyes in conjunction with computer vision and the HAAR classifier.We aim to implement eye gaze detection by considering facial landmarks with two different Convolutional Neural Network(CNN)models,namely the AlexNet model and the VGG16 model.The proposed system outperforms the traditional eye gaze detection system which only uses computer vision and the HAAR classifier in several evaluation metric scores.The proposed system is accurate without the need for complex hardware.Therefore,it can be implemented in educational institutes for the fair conduct of examinations,as well as in other instances where eye gaze detection is required.
基金funded by the National Natural Science Foundation of China Natural(Nos.U22A2041,82071915,and 62372047)the Shenzhen Key Laboratory of Intelligent Bioinformatics(No.ZDSYS20220422103800001)+5 种基金the Shenzhen Science and Technology Program(No.KQTD20200820113106007)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515220015)the Zhuhai Technology and Research Foundation(Nos.ZH22036201210034PWC,2220004000131,and 2220004002412)the Project of Humanities and Social Science of MOE(Ministry of Education in China)(No.22YJCZH213)the Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJZD-K202203601,KJQN0202203605,and KJQN202203607)the Natural Science Foundation of Chongqing China(No.cstc2021jcyj-msxmX1108).
文摘This study explores the potential of Artificial Intelligence(AI)in early screening and prognosis of Dry Eye Disease(DED),aiming to enhance the accuracy of therapeutic approaches for eye-care practitioners.Despite the promising opportunities,challenges such as diverse diagnostic evidence,complex etiology,and interdisciplinary knowledge integration impede the interpretability,reliability,and applicability of AI-based DED detection methods.The research conducts a comprehensive review of datasets,diagnostic evidence,and standards,as well as advanced algorithms in AI-based DED detection over the past five years.The DED diagnostic methods are categorized into three groups based on their relationship with AI techniques:(1)those with ground truth and/or comparable standards,(2)potential AI-based methods with significant advantages,and(3)supplementary methods for AI-based DED detection.The study proposes suggested DED detection standards,the combination of multiple diagnostic evidence,and future research directions to guide further investigations.Ultimately,the research contributes to the advancement of ophthalmic disease detection by providing insights into knowledge foundations,advanced methods,challenges,and potential future perspectives,emphasizing the significant role of AI in both academic and practical aspects of ophthalmology.