期刊文献+
共找到32,053篇文章
< 1 2 250 >
每页显示 20 50 100
Synergy in Rice Immunity:Exploring Strategies of Coordinated Disease Defense Through Receptor-Like Kinases and Receptor-Like Cytoplasmic Kinases
1
作者 PEI Mengtian CAO Yingying +6 位作者 XIE Xuze CAO Ying CHEN Jia ZHANG Xi WANG Zonghua LU Guodong ZHANG Shenghang 《Rice science》 SCIE CSCD 2024年第6期643-658,共16页
Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in imm... Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in immune responses against a variety of pathogens,including fungi,bacteria,and viruses.However,research on the specific response mechanisms and the spectrum of different kinase activities against various pathogens remains insufficient.This review provides an in-depth and comprehensive overview of the types and functions of RLKs and RLCKs involved in disease resistance,emphasizing the central role of certain RLKs and RLCKs in the plant immune system.These kinases can recognize specific molecular patterns of pathogens and rapidly initiate an immune response in rice.Furthermore,the activity and functional regulation of these key kinases are tightly controlled by various post-translational modifications,such as phosphorylation and ubiquitination.This meticulous regulation ensures that the rice immune system's response is both precise and timely,effectively balancing the intensity of the immune response and preventing potential issues caused by either hyperactivity or insufficiency.By synthesizing current research findings,this review not only broadens our understanding of the role of RLKs and RLCKs in plant immunity but also provides new perspectives and strategies for future research on disease resistance breeding in rice.Future studies are expected to delve deeper into the signaling networks and regulatory mechanisms of these kinases,exploring their potential in agricultural production to develop rice varieties with enhanced disease resistance. 展开更多
关键词 receptor-like kinase receptor-like cytoplasmic kinase pathogen-associated molecular pattern genetic breeding
下载PDF
A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases
2
作者 NILAM BHUSARE MAUSHMI KUMAR 《Oncology Research》 SCIE 2024年第5期849-875,共27页
Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical int... Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical intervention,and chemotherapy.Unfortunately,the median survival rate remains dishearteningly low at 12–15 months.One of the major obstacles in treating glioblastoma is the recurrence of tumors,making chemotherapy the primary approach for secondary glioma patients.However,the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms.Consequently,considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs.To tackle glioma,numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEKERK-MPAK.By targeting specific signaling pathways,heterocyclic compounds have demonstrated efficacy in glioma therapeutics.Additionally,key kinases including phosphatidylinositol 3-kinase(PI3K),serine/threonine kinase,cytoplasmic tyrosine kinase(CTK),receptor tyrosine kinase(RTK)and lipid kinase(LK)have been considered for investigation.These pathways play crucial roles in drug effectiveness in glioma treatment.Heterocyclic compounds,encompassing pyrimidine,thiazole,quinazoline,imidazole,indole,acridone,triazine,and other derivatives,have shown promising results in targeting these pathways.As part of this review,we propose exploring novel structures with low toxicity and high potency for glioma treatment.The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier.By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics,we can maximize their therapeutic value and minimize adverse effects.Considering the complex nature of glioblastoma,these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles. 展开更多
关键词 GLIOBLASTOMA kinase pathway PYRIMIDINE QUINAZOLINE HETEROCYCLES
下载PDF
Mouse KL2 is a unique MTSE involved in chromosome-based spindle organization and regulated by multiple kinases during female meiosis
3
作者 Shiya Xie Yanjie Yang +8 位作者 Zhen Jin Xiaocong Liu Shuping Zhang Ning Su Jiaqi Liu Congrong Li Dong Zhang Leilei Gao Zhixia Yang 《Journal of Biomedical Research》 CAS CSCD 2024年第5期485-499,I0009-I0011,共18页
Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproduct... Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes. 展开更多
关键词 MOUSE KL2 MTSE kinasE female meiosis
下载PDF
RGS4 promotes the progression of gastric cancer through the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition
4
作者 Peng-Yu Chen Pei-Yao Wang +7 位作者 Bang Liu Yang-Pu Jia Zhao-Xiong Zhang Xin Liu Dao-Han Wang Yong-Jia Yan Wei-Hua Fu Feng Zhu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期113-127,共15页
BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progr... BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition. 展开更多
关键词 Gastric cancer PROGNOSIS Regulator of G protein signaling 4 Focal adhesion kinase Epithelial-mesenchymal transition
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
5
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Pan-TRK positive uterine sarcoma in immunohistochemistry without neurotrophic tyrosine receptor kinase gene fusions:A case report
6
作者 Seungmee Lee Yu-Ra Jeon +2 位作者 Changmin Shin Sun-Young Kwon Sojin Shin 《World Journal of Clinical Cases》 SCIE 2025年第2期39-49,共11页
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept... BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment. 展开更多
关键词 Uterine sarcoma Cervical sarcoma Neurotrophic tyrosine receptor kinase gene fusion Next generation sequencing Case report
下载PDF
N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca^2+/calmodulin-dependent protein kinase Ⅱ in rat hippocampus after cerebral ischemia 被引量:7
7
作者 吴辉文 李洪福 郭军 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第2期107-112,共6页
Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global c... Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade. 展开更多
关键词 cerebral ischemia extracellular signal-regulated kinases NMDA receptors Src family tyrosine kinases CaMKⅡ
下载PDF
Involvement of Calcium dependent Protein Kinases in ABA regulation of Stomatal Movement 被引量:9
8
作者 王喜庆 武维华 《Acta Botanica Sinica》 CSCD 1999年第5期556-559,共4页
Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA... Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA) in Vicia faba. Stomatal opening was completely inhibited by external application of 1 μmol/L ABA, and such ABA inhibition was significantly reversed by the addition of CDPK inhibitor trifluoperazine (TFP). The inward whole cell K + currents were inhibited by 60% in the presence of 1 μmol/L intracellular ABA, and this inhibition was completely abolished by the addition of CDPK competitive substrate histone Ⅲ S. The results suggest that CDPKs may be involved in the signal transduction cascades of ABA regulated stomatal movements. 展开更多
关键词 Calcium dependent protein kinases (CDPKs) K + channels Abscisic acid Stomatal guard cells
下载PDF
Targeting receptor tyrosine kinases in gastric cancer 被引量:5
9
作者 Asahiro Morishita Jian Gong Tsutomu Masaki 《World Journal of Gastroenterology》 SCIE CAS 2014年第16期4536-4545,共10页
Molecularly targeted therapeutic agents are constantly being developed and have been shown to be effective in various clinical trials. One group of representative targeted oncogenic kinases, the receptor tyrosine kina... Molecularly targeted therapeutic agents are constantly being developed and have been shown to be effective in various clinical trials. One group of representative targeted oncogenic kinases, the receptor tyrosine kinases (RTKs), has been associated with gastric cancer development. Trastuzumab, an inhibitor of ERBB2, has been approved for the treatment of gastric cancer, although other receptor tyrosine kinases, such as epidermal growth factor receptor, vascular endothelial growth factor, platelet-derived growth factor receptor, c-Met, IGF-1R and fibroblast growth factor receptor 2, are also activated in gastric cancer. The promising results of the trastuzumab clinical trial for gastric cancer resulted in the approval of trastuzumab-based therapy as a first-line treatment for human epidermal growth factor receptor 2-positive patients. On the other hand, the trial examining bevacizumab in combination with conventional chemotherapy did not meet its primary goal of increasing the overall survival time of gastric cancer patients; however, a significantly higher response rate and a longer progression-free survival were observed in the bevacizumab arm of the trial. Other clinical trials, especially phase III trials that have tested drugs targeting RTKs, such as cetuximab, panitumumab, gefitinib, erlotinib, figitumumab, sorafenib, sunitinib and lapatinib, have shown that these drugs have modest effects against gastric cancer. This review summarizes the recent results from the clinical trials of molecularly targeted drugs and suggests that further improvements in the treatment of advanced gastric cancer can be achieved through the combination of conventional drugs with the new molecularly targeted therapies. 展开更多
关键词 Receptor tyrosine kinases Gastric cancer Epidermal growth factor receptor TRASTUZUMAB CETUXIMAB LAPATINIB PANITUMUMAB ERLOTINIB Bevacizumab
下载PDF
Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway 被引量:12
10
作者 Ning Yang Juan-Juan Shi +6 位作者 Feng-Ping Wu Mei Li Xin Zhang Ya-Ping Li Song Zhai Xiao-Li Jia Shuang-Suo Dang 《World Journal of Gastroenterology》 SCIE CAS 2017年第7期1203-1214,共12页
AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro a... AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on alpha-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway. 展开更多
关键词 Caffeic acid phenethyl ester Liver fibrosis ANTIOXIDATION Nrf2 Mitogen activated protein kinases
下载PDF
Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion 被引量:3
11
作者 Xian Sun 《The Journal of Biomedical Research》 CAS 2010年第2期132-137,共6页
Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvesse... Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular- signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. Results: At lh reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P 〈 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P 〈 0.05) by the sphingomyelinase inhibitor. Conclusion: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion. 展开更多
关键词 CERAMIDE cerebral ischemia extracellular-signal regulated kinase c-Jun N-terminal protein kinase
下载PDF
Activation of extracellular signal-related kinases 1 and 2 in Sertoli cells in experimentally cryptorchid rhesus monkeys 被引量:6
12
作者 Xue-Sen Zhang Zhi-Hong Zhang Shu-Hua Guo Wei Yang Zhu-Qiang Zhang Jin-Xiang Yuan Xuan Jin Zhao-Yuan Hu Yi-Xun Liu 《Asian Journal of Andrology》 SCIE CAS CSCD 2006年第3期265-272,共8页
Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in respon... Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in response to heat stress in the cryptorchid testis, and to investigate a possible relation to Sertoli cell dedifferentiation. Methods: Immunohistochemistry and western blot were used to examine the expression and activation of ERK1/2, p38 and JNK in the cryptorchid testis at various stages after experimental cryptorchidism. Results: The abdominal temperature did not obviously change the total ERK1/2 expression but significantly activated phospho-ERK1/2 in the Sertoli cells of the cryptorchid testis. Heat stress increased total JNK expression in the Sertoli cells of the cryptorchid testis but did not activate phospho-JNK. Neither total p38 nor phospho-p38 was induced by heat stress in the Sertoli cells of the cryptorchid testis. Changes in the spatiotemporal expression of cytokeratin 18 (CK18), a marker of immature or undifferentiated Sertoli cells, were induced in the cryptorchid testis in a pattern similar to the activation of ERK1/2. Condusion: The activation of ERK1/2 in the testis may be related to dedifferentiation of Sertoli cells under heat stress induced by experimental cryptorchidism. 展开更多
关键词 rhesus monkey CRYPTORCHIDISM Sertoli cell DEDIFFERENTIATION extracellular signal-regulated kinases 1 and 2
下载PDF
Downregulation of cold-inducible RNA-binding protein activates mitogen-activated protein kinases and impairs spermatoRenic function in mouse testes 被引量:8
13
作者 Zhi-Ping Xia Xin-Min Zheng +3 位作者 Hang Zheng Xiao-Jun Liu Gui-Yong Liu Xing-Huan Wang 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第6期884-889,共6页
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp... Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways. 展开更多
关键词 cold-inducible RNA-binding protein (CIRP) mitogen-activated protein kinase (MAPK) siRNA in vivo SPERMATOGENESIS heat stress male infertility
下载PDF
Mechanism of Retinoic Acid and Mitogen-activated Protein Kinases Regulating Hyperoxia Lung Injury 被引量:3
14
作者 李文斌 常立文 +5 位作者 容志惠 张谦慎 王华 汪鸿 刘春梅 刘伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期178-181,共4页
To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (t... To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation. 展开更多
关键词 hyperoxia lung injury mitogen-activated protein kinases retinoic acid APOPTOSIS PROLIFERATION
下载PDF
Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation 被引量:9
15
作者 Hai Jiang Jianchun Wu Chen He Wending Yang Honglin Li 《Cell Research》 SCIE CAS CSCD 2009年第4期458-468,共11页
Cyclin-dependent kinase 1 (Cdkl)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known... Cyclin-dependent kinase 1 (Cdkl)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We re- port here the identification of C53 protein as a novel regulator of Cdkl activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chkl and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 inter- acts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdkl activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chkl, C53 promotes Cdkl activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response. 展开更多
关键词 C53 Cdkl checkpoint kinases
下载PDF
“Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases 被引量:3
16
作者 Gabriela Vaz Meirelles Arina Marina Perez +5 位作者 Edmárcia Elisa de Souza Ferna Luisa Basei Priscila Ferreira Papa Talita Diniz Melo Hanchuk Vanessa Bomfim Cardoso Jrg Kobarg 《World Journal of Biological Chemistry》 CAS 2014年第2期141-160,共20页
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A(NIMA)-related kinases(Neks). The founding member of this family is the sole member NIMA ... Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A(NIMA)-related kinases(Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals:(1) centrioles/mitosis;(2) primary ciliary function/ciliopathies; and(3) DNA damage response(DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups' functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology. 展开更多
关键词 Cell cycle MITOSIS DNA damage response Protein interactions kinases
下载PDF
Group Ⅱ p21-activated kinases as therapeutic targets in gastrointestinal cancer 被引量:2
17
作者 Yang-Guang Shao Ke Ning Feng Li 《World Journal of Gastroenterology》 SCIE CAS 2016年第3期1224-1235,共12页
P21-activated kinases(PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group Ⅰ(PAK1-3) and group Ⅱ(PAK4-6). Focus is currently shifting from group Ⅰ ... P21-activated kinases(PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group Ⅰ(PAK1-3) and group Ⅱ(PAK4-6). Focus is currently shifting from group Ⅰ PAKs to group Ⅱ PAKs. Group Ⅱ PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group Ⅱ PAKs have become popular potential drug target candidates. However, few group Ⅱ PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and "drug-like" properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group Ⅱ PAKs, the importance of group Ⅱ PAKs in the development and progression of gastrointestinal cancer, and smallmolecule inhibitors of group Ⅱ PAKs for the treatment of cancer. 展开更多
关键词 GROUP p21-activated kinases SIGNALINGPATHWAY GASTROINTESTINAL cancer PAK4 INHIBITOR Drugtarget
下载PDF
Advantages of Rho-associated kinases and their inhibitor fasudil for the treatment of neurodegenerative diseases 被引量:7
18
作者 Qing Wang Li-Juan Song +4 位作者 Zhi-Bin Ding Zhi Chai Jie-Zhong Yu Bao-Guo Xiao Cun-Gen Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2623-2631,共9页
Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in ... Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in the biological effects of immune cells and glial cells,as well as the development of neurodegenerative disorders such as Alzheimer’s disease,Parkinson’s disease,and multiple sclerosis.Previous studies by us and others confirmed that ROCKs inhibitors attenuated the symptoms and progression of experimental models of the abovementioned neurodegenerative diseases by inhibiting neuroinflammation,regulating immune imbalance,repairing the blood-brain barrier,and promoting nerve repair and myelin regeneration.Fasudil,the first ROCKs inhibitor to be used clinically,has a good therapeutic effect on neurodegenerative diseases.Fasudil increases the activity of neural stem cells and mesenchymal stem cells,thus optimizing cell therapy.This review will systematically describe,for the first time,the effects of abnormal activation of ROCKs on T cells,B cells,microglia,astrocytes,oligodendrocytes,and pericytes in neurodegenerative diseases of the central nervous system,summarize the therapeutic potential of fasudil in several experimental models of neurodegenerative diseases,and clarify the possible cellular and molecular mechanisms of ROCKs inhibition.This review also proposes that fasudil is a novel potential treatment,especially in combination with cell-based therapy.Findings from this review add support for further investigation of ROCKs and its inhibitor fasudil for the treatment of neurodegenerative diseases. 展开更多
关键词 Alzheimer’s disease cell-based therapy central nervous system cells FASUDIL IMMUNOCYTES multiple sclerosis Parkinson’s disease PERICYTES Rho kinase inhibitor Rho-associated kinases
下载PDF
Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis 被引量:3
19
作者 Natasha Irrera Alessandra Bitto +2 位作者 Monica Interdonato Francesco Squadrito Domenica Altavilla 《World Journal of Gastroenterology》 SCIE CAS 2014年第44期16535-16543,共9页
Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis ... Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis. 展开更多
关键词 Experimental acute pancreatitis Mitogen-activated protein kinases Mitogen-activated protein kinases inhibitors CYTOKINES CHOLECYSTOKININ CERULEIN
下载PDF
Tacolimus Postconditioning Alleviates Apoptotic Cell Death in Rats after Spinal Cord Ischemia-reperfusion Injury via Up-regulating Protein-Serine-Threonine Kinases Phosphorylation 被引量:2
20
作者 潘峰 程艳香 +7 位作者 祝成亮 陶凤华 李章华 陶海鹰 贺斌 余铃 戢鹏 唐欢 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第6期852-856,共5页
The effects of tacrolimus postconditioning on protein-serine-threonine kinases (Akt) phos- phorylation and apoptotic cell death in rats after spinal cord ischemia-reperfusion injury were investi- gated. Ninety male ... The effects of tacrolimus postconditioning on protein-serine-threonine kinases (Akt) phos- phorylation and apoptotic cell death in rats after spinal cord ischemia-reperfusion injury were investi- gated. Ninety male SD rats were randomly divided into sham operation group, ischemia-reperfusion group and tacrolimus postconditioning group. The model of spinal cord ischemia was established by means of catheterization through femoral artery and balloon dilatation. The spinal cord was reperfused 20 min after ischemia via removing saline out of balloon. The corresponding spinal cord segments were excised and determined for Akt activity in spinal cord tissue by using Western blotting at 5, 15, and 60 min after reperfusion respectively. Spinal cord tissue sections were stained immunohistochemically for detection of the phosphorylated Akt expression at 15 min after reperfusion. Flow cytometry was applied to assess apoptosis of neural cells, and dry-wet weights method was employed to measure water content in spinal cord tissue at 24 h after reperfusion. The results showed that the activities of Akt in tarcolimus postconditioning group were significantly higher than those in ischemia-reperfusion group at 5, 15, and 60 min after reperfusion (P〈0.05, P〈0.01). The Akt activities reached the peak at 15 min after reperfu- sion in ischemia-reperfusion group and tacrolimus postconditioning group. The percentage of apoptotic cells and water content in spinal cord tissue were significantly reduced (P〈0.01) in tacrolimus postcon- ditioning group as compared with those in ischemia-reperfusion group at 24 h after reperfusion. It is concluded that tacrolimus postconditioning can increase Akt activity in spinal cord tissue of rats, inhibit apoptosis of neural cells as well as tissue edema, and thereby alleviate spinal cord ischemia-reperfusion injury. 展开更多
关键词 protein-serine-threonine kinases reperfusion injury spinal cord ischemia tacrolimus post- conditioning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部