This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
Over time,the traditional house in central Iran,which Tehran geographically belongs to,has undergone deep physical and morphological changes as a result of technological,social and economic transformations,passing fro...Over time,the traditional house in central Iran,which Tehran geographically belongs to,has undergone deep physical and morphological changes as a result of technological,social and economic transformations,passing from the characteristics of an introverted house enclosed by walls overlooking an inner courtyard to the multi-storey condominium with an extroverted outlook.Here the façade becomes a key element:it is a threshold between urban and private,outdoor and indoor.The article shows a mosaic of patterns and materials of the new mid-rise residential building façades via photographs and diagrams to emphasize the strict connection between contemporary design and local tradition.展开更多
The manual visual inspections of façade building defects are posing a high and increasing cost for building asset managers,particularly when inspections delay projects or require asset outages,visits to decommiss...The manual visual inspections of façade building defects are posing a high and increasing cost for building asset managers,particularly when inspections delay projects or require asset outages,visits to decommissioned sites or work within hazardous environments.This paper reports on the development,testing and delivery of a working mobile app prototype to facilitate the inspections and documentation of building facade condition monitoring.The work presented builds upon the development of an online platform for remote building inspection based on the integration of methodologies and tools,including VR(virtual reality),and digital photogrammetry to collect real-time data that support automated decision making.The mobile app:(i)allows the user to import 3D models and 2D building plans;(ii)provides the means of first-person exploration of models via a VR headset;and(iii)captures,records and catalogues images of façade defect types,and the date and time.An inspection case study was used to demonstrate and evaluate the mobile app prototype.The Building Inspector app allows building professionals to manage inspections and to track past and ongoing monitoring of the condition of building façades.展开更多
The present research aims to identify the possibilities of rehabilitation of building facades in the centre of Chisinau, through the use of high-performance materials, use of high-performance technologies in exec...The present research aims to identify the possibilities of rehabilitation of building facades in the centre of Chisinau, through the use of high-performance materials, use of high-performance technologies in execution, reduction of facade renovation costs, etc. In the process of organising the rehabilitation works of historical buildings of architectural value, we are dealing with the following: the value of the rehabilitation works of a historical building is very high, the duration of the rehabilitation is important, the attitude of the society is insufficient, the lack of strategies for the rehabilitation of buildings at the municipality level. In order to achieve this objective, we propose to research the following tasks: definition of the concept of rehabilitation of buildings in the Historic Centre of Chisinau;legislative, normative assurance of rehabilitation of historical heritage in the Republic of Moldova;analysis of the situation in Chisinau on the example of historical buildings with limestone finishes and examination by non-destructive methods of facades;solutions for rehabilitation of facades of historical buildings by comparing two types of technologies. In conclusion, emphasis will be placed on the choice of the most efficient method in terms of material, technology and cost.展开更多
Multidisciplinary, integrated planning approach by architects, engineers, scientists and manufacturers to reduce energy consumption of buildings. The CIIRC Complex, located on the main campus of Czech Technical Univer...Multidisciplinary, integrated planning approach by architects, engineers, scientists and manufacturers to reduce energy consumption of buildings. The CIIRC Complex, located on the main campus of Czech Technical University in Prague consists of two buildings, newly constructed building and adaptive reuse of existing building. CIIRC—Czech Institute of Informatics, Robotics and Cybernetics is a contemporary teaching facility of new generation and use for scientific research teams. New building has ten above-ground floors, on the bottom 4 floors of laboratories, scientist modules, classrooms, above are offices, meeting rooms, teaching and research modules for professors and students. Offices of the rector are on the last two floors of the building. On the top floor is congress type auditorium, in the basement is fully automatic car park. Double skin pneumatic cushions facade. In the project are introduced series of architectural and technical features and innovations. Probably the most visible is the double skin facade facing south-transparent double layer membrane ETFE (Ethylen-TetraFluorEthylen) cushions with triple glazed modular system assembly. Acting as solar collector, recuperating of hot air on the top floors, saving up to 30% of an energy consumption.展开更多
为解决传统座舱试验台结构同质化及模块化设计不足等问题,采用亲和图法整理了汽车故障及用户初始需求;采用模糊Kano模型进行需求指标权重计算,并结合质量特性要素进行用户核心需求汇总;通过功能分析系统技术(Function Analysis System T...为解决传统座舱试验台结构同质化及模块化设计不足等问题,采用亲和图法整理了汽车故障及用户初始需求;采用模糊Kano模型进行需求指标权重计算,并结合质量特性要素进行用户核心需求汇总;通过功能分析系统技术(Function Analysis System Technique,FAST)黑箱模型将用户需求转化为功能需求,并引入公理设计(Axiomatic Design,AD)理论与功能-行为-结构(Function-Behavior-Structure,FBS)模型进行逐级映射,最终确定智能座舱柔性试验台的结构设计要素。该设计过程以用户核心需求为导向,通过FAST-AD-FBS集成方法的应用,克服了传统产品概念设计中用户需求与产品功能结构设计间存在矛盾的问题,为提高产品创新设计的完整性及准确性提供了理论参考。展开更多
Building surface cool materials are novel materials that can reduce urban heat island intensity and decrease building energy consumption.This study investigated the impact of radiative properties of materials,faç...Building surface cool materials are novel materials that can reduce urban heat island intensity and decrease building energy consumption.This study investigated the impact of radiative properties of materials,façade orientation,and morphological parameters on energy consumption in six typical residential neighborhoods in Nanjing,China.The neighborhood energy consumption of 16 application schemes considering the façade orientation factor is compared to determine the best energy-saving scheme.Seasonal and annual energy-saving rates,savings in electricity costs,and the price ceiling for materials per unit area are analyzed.The results show that for low-rise buildings,using cool materials only on the roof can reduce the annual energy consumption by 1%.When cool or super cool materials are also used on the building façade,the annual energy saving rate can be up to 3.4%and 4.3%,respectively.Using cool materials on the south façade of buildings is not recommended due to significant heat loss in winter.Considering savings in electricity costs and the price ceiling for materials per unit area,the price of cool and super cool materials should be less than 3.0 and 3.7 RMB/m2,respectively,assuming a lifespan of eight years in Nanjing.展开更多
Building-Integrated Photovoltaic(BIPV)on vertical façades is a potential PV application in today’s buildings.The performance of BIPV on façades is significantly influenced by the façade orientation.For...Building-Integrated Photovoltaic(BIPV)on vertical façades is a potential PV application in today’s buildings.The performance of BIPV on façades is significantly influenced by the façade orientation.For tropical cities,the optimum façade orientation,in terms of maximum energy yield and daylight performance,cannot be simply determined,due to relatively symmetrical sun path throughout the day.This study therefore aims to determine the optimum orientation for BIPV on tropical building façades.To achieve the objective,experiment,modelling,and computational simulation are conducted to evaluate the BIPV energy yield and to predict the indoor daylight performance in a scale-model building with a 105Wp monocrystalline silicon PV,facing each cardinal orienta-tion in Bandung,Indonesia.The South orientation yields practically zero ASE_(1000,250),providing the best annual daylight performance,and yielding the most desirable value in four out of five daylight metrics.The greatest annual energy yield is at the North orientation,providing 179-186 kWh(95%prediction interval)per year,but with larger uncertainty compared to that at the South,due to direct sunlight occurrence.Based on three different objective functions,the South orientation is considered optimum for placing the BIPV panel on the prototype façade in the location.展开更多
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金When I was in Tehran three years ago,I had the opportunity to visit and meet some architects:this was the starting point to investigate Iranian architecture,especially the residential sector.I would like to acknowledge the seven architectural firms which answered my call and sent me photos and diagrams of the case studies chosen:Admun Studio,Faezeh Hadian Design Studio,Alidoost&Partners,Keivani Architects,Ayeneh Office,TDC Office.Thanks also go to Parham Rashidi for his valuable support in contacting the architects.
文摘Over time,the traditional house in central Iran,which Tehran geographically belongs to,has undergone deep physical and morphological changes as a result of technological,social and economic transformations,passing from the characteristics of an introverted house enclosed by walls overlooking an inner courtyard to the multi-storey condominium with an extroverted outlook.Here the façade becomes a key element:it is a threshold between urban and private,outdoor and indoor.The article shows a mosaic of patterns and materials of the new mid-rise residential building façades via photographs and diagrams to emphasize the strict connection between contemporary design and local tradition.
文摘The manual visual inspections of façade building defects are posing a high and increasing cost for building asset managers,particularly when inspections delay projects or require asset outages,visits to decommissioned sites or work within hazardous environments.This paper reports on the development,testing and delivery of a working mobile app prototype to facilitate the inspections and documentation of building facade condition monitoring.The work presented builds upon the development of an online platform for remote building inspection based on the integration of methodologies and tools,including VR(virtual reality),and digital photogrammetry to collect real-time data that support automated decision making.The mobile app:(i)allows the user to import 3D models and 2D building plans;(ii)provides the means of first-person exploration of models via a VR headset;and(iii)captures,records and catalogues images of façade defect types,and the date and time.An inspection case study was used to demonstrate and evaluate the mobile app prototype.The Building Inspector app allows building professionals to manage inspections and to track past and ongoing monitoring of the condition of building façades.
文摘The present research aims to identify the possibilities of rehabilitation of building facades in the centre of Chisinau, through the use of high-performance materials, use of high-performance technologies in execution, reduction of facade renovation costs, etc. In the process of organising the rehabilitation works of historical buildings of architectural value, we are dealing with the following: the value of the rehabilitation works of a historical building is very high, the duration of the rehabilitation is important, the attitude of the society is insufficient, the lack of strategies for the rehabilitation of buildings at the municipality level. In order to achieve this objective, we propose to research the following tasks: definition of the concept of rehabilitation of buildings in the Historic Centre of Chisinau;legislative, normative assurance of rehabilitation of historical heritage in the Republic of Moldova;analysis of the situation in Chisinau on the example of historical buildings with limestone finishes and examination by non-destructive methods of facades;solutions for rehabilitation of facades of historical buildings by comparing two types of technologies. In conclusion, emphasis will be placed on the choice of the most efficient method in terms of material, technology and cost.
文摘Multidisciplinary, integrated planning approach by architects, engineers, scientists and manufacturers to reduce energy consumption of buildings. The CIIRC Complex, located on the main campus of Czech Technical University in Prague consists of two buildings, newly constructed building and adaptive reuse of existing building. CIIRC—Czech Institute of Informatics, Robotics and Cybernetics is a contemporary teaching facility of new generation and use for scientific research teams. New building has ten above-ground floors, on the bottom 4 floors of laboratories, scientist modules, classrooms, above are offices, meeting rooms, teaching and research modules for professors and students. Offices of the rector are on the last two floors of the building. On the top floor is congress type auditorium, in the basement is fully automatic car park. Double skin pneumatic cushions facade. In the project are introduced series of architectural and technical features and innovations. Probably the most visible is the double skin facade facing south-transparent double layer membrane ETFE (Ethylen-TetraFluorEthylen) cushions with triple glazed modular system assembly. Acting as solar collector, recuperating of hot air on the top floors, saving up to 30% of an energy consumption.
文摘为解决传统座舱试验台结构同质化及模块化设计不足等问题,采用亲和图法整理了汽车故障及用户初始需求;采用模糊Kano模型进行需求指标权重计算,并结合质量特性要素进行用户核心需求汇总;通过功能分析系统技术(Function Analysis System Technique,FAST)黑箱模型将用户需求转化为功能需求,并引入公理设计(Axiomatic Design,AD)理论与功能-行为-结构(Function-Behavior-Structure,FBS)模型进行逐级映射,最终确定智能座舱柔性试验台的结构设计要素。该设计过程以用户核心需求为导向,通过FAST-AD-FBS集成方法的应用,克服了传统产品概念设计中用户需求与产品功能结构设计间存在矛盾的问题,为提高产品创新设计的完整性及准确性提供了理论参考。
基金This study was financially supported by the National Natural Science Foundation of China(project No.52278110)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(project No.KYCX23_0170).
文摘Building surface cool materials are novel materials that can reduce urban heat island intensity and decrease building energy consumption.This study investigated the impact of radiative properties of materials,façade orientation,and morphological parameters on energy consumption in six typical residential neighborhoods in Nanjing,China.The neighborhood energy consumption of 16 application schemes considering the façade orientation factor is compared to determine the best energy-saving scheme.Seasonal and annual energy-saving rates,savings in electricity costs,and the price ceiling for materials per unit area are analyzed.The results show that for low-rise buildings,using cool materials only on the roof can reduce the annual energy consumption by 1%.When cool or super cool materials are also used on the building façade,the annual energy saving rate can be up to 3.4%and 4.3%,respectively.Using cool materials on the south façade of buildings is not recommended due to significant heat loss in winter.Considering savings in electricity costs and the price ceiling for materials per unit area,the price of cool and super cool materials should be less than 3.0 and 3.7 RMB/m2,respectively,assuming a lifespan of eight years in Nanjing.
基金supported by the Ministry of Education,Culture,Research,and Technology of the Republic of Indonesia,through the In-donesia Collaboration Research Program(RKI)2022.
文摘Building-Integrated Photovoltaic(BIPV)on vertical façades is a potential PV application in today’s buildings.The performance of BIPV on façades is significantly influenced by the façade orientation.For tropical cities,the optimum façade orientation,in terms of maximum energy yield and daylight performance,cannot be simply determined,due to relatively symmetrical sun path throughout the day.This study therefore aims to determine the optimum orientation for BIPV on tropical building façades.To achieve the objective,experiment,modelling,and computational simulation are conducted to evaluate the BIPV energy yield and to predict the indoor daylight performance in a scale-model building with a 105Wp monocrystalline silicon PV,facing each cardinal orienta-tion in Bandung,Indonesia.The South orientation yields practically zero ASE_(1000,250),providing the best annual daylight performance,and yielding the most desirable value in four out of five daylight metrics.The greatest annual energy yield is at the North orientation,providing 179-186 kWh(95%prediction interval)per year,but with larger uncertainty compared to that at the South,due to direct sunlight occurrence.Based on three different objective functions,the South orientation is considered optimum for placing the BIPV panel on the prototype façade in the location.