Developments in advanced manufacturing have promoted the miniaturization of semiconductor electronic devices to a near-atomic scale,which continuously follows the‘top-down’construction method.However,huge challenges...Developments in advanced manufacturing have promoted the miniaturization of semiconductor electronic devices to a near-atomic scale,which continuously follows the‘top-down’construction method.However,huge challenges have been encountered with the exponentially increased cost and inevitably prominent quantum effects.Molecular electronics is a highly interdisciplinary subject that studies the quantum behavior of electrons tunneling in molecules.It aims to assemble electronic devices in a‘bottom-up’manner on this scale through a single molecule,thereby shedding light on the future design of logic circuits with new operating principles.The core technologies in this field are based on the rapid development of precise fabrication at a molecular scale,regulation at a quantum scale,and related applications of the basic electronic component of the‘electrode-molecule-electrode junction’.Therefore,the quantum charge transport properties of the molecule can be controlled to pave the way for the bottom-up construction of single-molecule devices.The review firstly focuses on the collection and classification of the construction methods for molecular junctions.Thereafter,various characterization and regulation methods for molecular junctions are discussed,followed by the properties based on tunneling theory at the quantum scale of the corresponding molecular electronic devices.Finally,a summary and perspective are given to discuss further challenges and opportunities for the future design of electronic devices.展开更多
A typical contemporary computerized product develop me nt workflow is outlined in Fig.1. Product geometry information is first prep ared with computer-aided design (CAD) software. The CAD format can then be com munica...A typical contemporary computerized product develop me nt workflow is outlined in Fig.1. Product geometry information is first prep ared with computer-aided design (CAD) software. The CAD format can then be com municated to other downstream-computerized applications like, computer-aided e ngineering analysis (CAE), computer-aided manufacturing (CAM) and/or rapid prot otyping. Since design may need to be modified to incorporate new requirements, a loop back path is also depicted in Fig.1. The design engineers will check ac cording to their experience, result of physical test and CAE simulation to decid e whether redesign is needed or not. If the design passes all tests, its pr ototype or product can be produced. Otherwise, the current practice is to chang e its geometry and/or select a more appropriate material. The iteration repeat s until the latest version satisfies the engineering specification and customer requirements. Note that the material is homogeneous in the part to be designed. With the advent of functionally graded material (FGM) research, a new workflow will become possible. Components incorporating FGM’s can be designed to achieve levels of performance superior to that of homogeneous materials by combining the desirable properties of each constituent phase. Theoretically, the material composition can be tailo red within a component to achieve local control of properties; for example, form ability, corrosion resistance, hardness, toughness, and so on. By such local co ntrol, monolithic components can be created that integrate the function of multi ple discrete components, saving part count, space, weight, and enabling concepts that would otherwise be impractical. Controlling the spatial distribution of p roperties via composition will allow for control of the state of the entire comp onent (the state of residual stress in a component). There are various methods p roposed to produce FGM components. In particular, solid freeform fabrication ( SFF) methods are commonly used to directly fabricate an FGM part in an additive fashion directly from a computer controlled, layer-by-layer, additive process in which a standard CAD is sliced into a series of horizontal planes. Common SF F techniques being investigated include three-dimensional printing (3DP), Lamin ate Object Manufacturing (LOM), Extrusion Freeform Fabrication (EFF), Selective Laser Sintering (SLS) and even Stereolithography (SL). Fig.1 Current CAE design workflow Fig.2 Proposed CAE design workflow for FGM Albeit the feasibility to fabricate FGM components, one gap still needs to be fi lled for real life FGM product design; namely, where and how to grade the compon ent. This paper will, thus, address issues on incorporating FGM for design impr ovement. Rather than changing the geometry or reselecting a new material, a FGM approach can be employed in design enhancement as shown in Fig.2. The same geo metry and material is retained except that functional property in needed regions is selectively reinforced. As in conventional workflow, CAE simulation is perf ormed after CAD modelling. CAE simulation is preferred since physical test is v ery expensive and most of them are destructive. Moreover, the experience of the engineers may not be accurate. More importantly, the result of CAE simulation is used in this research to produce a stress intensity map for selective reinfor cement. The map will be converted to tool path control signals for generating FG component via SFF machine. On the implementation side, SolidWorks is used fo r CAD modeling, COSMOS/Works is used for CAE simulation. The model is then selec tively reinforced according to the simulation result to produce a FGM enriched p ath plan to drive the Z-corp machine. Case studies are performed to verify the approach. The preliminary result is positive. Future extension to material oth er than starch and plaster powders and enhancement other than stress distributio n may be explored. In conclusion, a CAE-based methodology for FGM product des ign展开更多
Ultraviolet(UV)radiation can cause degradation or aging of many polymers and shorten the working-life of their products.Thus,UV protective covers are required in various occasions.Textiles with the UV-shielding functi...Ultraviolet(UV)radiation can cause degradation or aging of many polymers and shorten the working-life of their products.Thus,UV protective covers are required in various occasions.Textiles with the UV-shielding function possess unique properties compared with those covers in board or film shapes.TiO_2 nanoparticles(NPs),which were reported to have superior UV blocking function,can be used to produce UV protective covers in combination with fabric.However,efficient and environmentally friendly immobilization of TiO_2 Nps onto the fabrics is challenging.Polydopamine(PDA),a biomimetic synthetic polymer,has attracted great attentions recently due to its superior affinity to various materials and facile application procedure.Hence,in this research,the surface of nylon fabrics was modified by PDA to immobilizeTiO_2 NPs.Themodificationconditionswere systematically optimized.The immobilization of the NPs was confirmed by Fourier transform infrared spectrometer(FTIR)and scanning electron microscope(SEM).The functionalized nylon fabrics were proved to exhibit improved UV protection properties even after washing.This work provides a new and versatile surface modification technique for textiles.展开更多
The hierarchical porous N/O co-functionalized carbon(HPNOC)was scalably prepared by using the lowcost and renewable blighted grains as the raw material coupled with mild KHCO_3 activation for electrochemical capacitor...The hierarchical porous N/O co-functionalized carbon(HPNOC)was scalably prepared by using the lowcost and renewable blighted grains as the raw material coupled with mild KHCO_3 activation for electrochemical capacitors(ECs).The elemental N was in situ doped in the obtained HPNOC without any N-containing additives.Remarkably,the obtained HPNOC was endowed with a large specific surface area(about 2 624m^2·g^(-1)),high pore volume(about 1.35cm^3·g^(-1)),as well as high-content N/O functionalization(about 1.9%(in atom)N and about 10.2%(in atom)O.Furthermore,the as-resulted HPNOC electrode with a high mass loading of 5mg·cm^(-2 )exhibited competitive gravimetric capacitances of about 373.6F·g^(-1 )at 0.5A·g^(-1),and even about 260.4F·g^(-1 )at a high rate of 10A·g^(-1);superior capacitance retention of about 98.8%at 1A·g^(-1 )over 10 000consecutive cycles;and high specific energy of about 9.6W·h·kg^(-1 )at a power of 500W·kg^(-1),when evaluated as a promising electrode in 6mol KOH for advanced electrochemical supercapacitors.More encouragingly,the green synthetic strategy we developed holds a huge promise in generalizing for other biomass-derived carbon materials for versatile energy-related applications.展开更多
The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,...The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray(APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process, suspension plasma spray(SPS)was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.展开更多
Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, ...Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction.展开更多
A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of te...A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22173075,21933012,31871877)the National Key Research and Development Program of China(2017YFA0204902)the Fundamental Research Funds for the Central Universities(Nos.20720200068,20720190002).
文摘Developments in advanced manufacturing have promoted the miniaturization of semiconductor electronic devices to a near-atomic scale,which continuously follows the‘top-down’construction method.However,huge challenges have been encountered with the exponentially increased cost and inevitably prominent quantum effects.Molecular electronics is a highly interdisciplinary subject that studies the quantum behavior of electrons tunneling in molecules.It aims to assemble electronic devices in a‘bottom-up’manner on this scale through a single molecule,thereby shedding light on the future design of logic circuits with new operating principles.The core technologies in this field are based on the rapid development of precise fabrication at a molecular scale,regulation at a quantum scale,and related applications of the basic electronic component of the‘electrode-molecule-electrode junction’.Therefore,the quantum charge transport properties of the molecule can be controlled to pave the way for the bottom-up construction of single-molecule devices.The review firstly focuses on the collection and classification of the construction methods for molecular junctions.Thereafter,various characterization and regulation methods for molecular junctions are discussed,followed by the properties based on tunneling theory at the quantum scale of the corresponding molecular electronic devices.Finally,a summary and perspective are given to discuss further challenges and opportunities for the future design of electronic devices.
文摘A typical contemporary computerized product develop me nt workflow is outlined in Fig.1. Product geometry information is first prep ared with computer-aided design (CAD) software. The CAD format can then be com municated to other downstream-computerized applications like, computer-aided e ngineering analysis (CAE), computer-aided manufacturing (CAM) and/or rapid prot otyping. Since design may need to be modified to incorporate new requirements, a loop back path is also depicted in Fig.1. The design engineers will check ac cording to their experience, result of physical test and CAE simulation to decid e whether redesign is needed or not. If the design passes all tests, its pr ototype or product can be produced. Otherwise, the current practice is to chang e its geometry and/or select a more appropriate material. The iteration repeat s until the latest version satisfies the engineering specification and customer requirements. Note that the material is homogeneous in the part to be designed. With the advent of functionally graded material (FGM) research, a new workflow will become possible. Components incorporating FGM’s can be designed to achieve levels of performance superior to that of homogeneous materials by combining the desirable properties of each constituent phase. Theoretically, the material composition can be tailo red within a component to achieve local control of properties; for example, form ability, corrosion resistance, hardness, toughness, and so on. By such local co ntrol, monolithic components can be created that integrate the function of multi ple discrete components, saving part count, space, weight, and enabling concepts that would otherwise be impractical. Controlling the spatial distribution of p roperties via composition will allow for control of the state of the entire comp onent (the state of residual stress in a component). There are various methods p roposed to produce FGM components. In particular, solid freeform fabrication ( SFF) methods are commonly used to directly fabricate an FGM part in an additive fashion directly from a computer controlled, layer-by-layer, additive process in which a standard CAD is sliced into a series of horizontal planes. Common SF F techniques being investigated include three-dimensional printing (3DP), Lamin ate Object Manufacturing (LOM), Extrusion Freeform Fabrication (EFF), Selective Laser Sintering (SLS) and even Stereolithography (SL). Fig.1 Current CAE design workflow Fig.2 Proposed CAE design workflow for FGM Albeit the feasibility to fabricate FGM components, one gap still needs to be fi lled for real life FGM product design; namely, where and how to grade the compon ent. This paper will, thus, address issues on incorporating FGM for design impr ovement. Rather than changing the geometry or reselecting a new material, a FGM approach can be employed in design enhancement as shown in Fig.2. The same geo metry and material is retained except that functional property in needed regions is selectively reinforced. As in conventional workflow, CAE simulation is perf ormed after CAD modelling. CAE simulation is preferred since physical test is v ery expensive and most of them are destructive. Moreover, the experience of the engineers may not be accurate. More importantly, the result of CAE simulation is used in this research to produce a stress intensity map for selective reinfor cement. The map will be converted to tool path control signals for generating FG component via SFF machine. On the implementation side, SolidWorks is used fo r CAD modeling, COSMOS/Works is used for CAE simulation. The model is then selec tively reinforced according to the simulation result to produce a FGM enriched p ath plan to drive the Z-corp machine. Case studies are performed to verify the approach. The preliminary result is positive. Future extension to material oth er than starch and plaster powders and enhancement other than stress distributio n may be explored. In conclusion, a CAE-based methodology for FGM product des ign
基金National Natural Science Foundation of China(No.51503031)Pujiang Project from Shanghai Science and Technology Committee,China(No.15PJ1400300)+1 种基金Scientific Research Foundation for the Returned Overseas Scholars from the Ministry of Education,China(No.15B10127)Fundamental Research Funds for the Central Universities,China(No.2232015D3-02)
文摘Ultraviolet(UV)radiation can cause degradation or aging of many polymers and shorten the working-life of their products.Thus,UV protective covers are required in various occasions.Textiles with the UV-shielding function possess unique properties compared with those covers in board or film shapes.TiO_2 nanoparticles(NPs),which were reported to have superior UV blocking function,can be used to produce UV protective covers in combination with fabric.However,efficient and environmentally friendly immobilization of TiO_2 Nps onto the fabrics is challenging.Polydopamine(PDA),a biomimetic synthetic polymer,has attracted great attentions recently due to its superior affinity to various materials and facile application procedure.Hence,in this research,the surface of nylon fabrics was modified by PDA to immobilizeTiO_2 NPs.Themodificationconditionswere systematically optimized.The immobilization of the NPs was confirmed by Fourier transform infrared spectrometer(FTIR)and scanning electron microscope(SEM).The functionalized nylon fabrics were proved to exhibit improved UV protection properties even after washing.This work provides a new and versatile surface modification technique for textiles.
基金supported by the National Natural Science Foundations of China(Nos.51572005,51772127)
文摘The hierarchical porous N/O co-functionalized carbon(HPNOC)was scalably prepared by using the lowcost and renewable blighted grains as the raw material coupled with mild KHCO_3 activation for electrochemical capacitors(ECs).The elemental N was in situ doped in the obtained HPNOC without any N-containing additives.Remarkably,the obtained HPNOC was endowed with a large specific surface area(about 2 624m^2·g^(-1)),high pore volume(about 1.35cm^3·g^(-1)),as well as high-content N/O functionalization(about 1.9%(in atom)N and about 10.2%(in atom)O.Furthermore,the as-resulted HPNOC electrode with a high mass loading of 5mg·cm^(-2 )exhibited competitive gravimetric capacitances of about 373.6F·g^(-1 )at 0.5A·g^(-1),and even about 260.4F·g^(-1 )at a high rate of 10A·g^(-1);superior capacitance retention of about 98.8%at 1A·g^(-1 )over 10 000consecutive cycles;and high specific energy of about 9.6W·h·kg^(-1 )at a power of 500W·kg^(-1),when evaluated as a promising electrode in 6mol KOH for advanced electrochemical supercapacitors.More encouragingly,the green synthetic strategy we developed holds a huge promise in generalizing for other biomass-derived carbon materials for versatile energy-related applications.
基金Project(50675081)supported by the National Natural Science Foundation of ChinaProject(20080440940)supported by China Postdoctoral Science Foundation
文摘The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray(APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process, suspension plasma spray(SPS)was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.
基金support from the M.C.Gill Composites Center at the University of Southern California(USC)supported by the USC Center for High-Performance Computing(hpcc.usc.edu)
文摘Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction.
文摘A general shape of tensile stress-strain curves of woven fabrics is first recognised by puttingtested and predicted results together.An exponential function with two parameters is then selectedfor the prediction of tensile stress-strain relationship.The predicted results by using the proposedfunction show excellent agreement with experimental data.