Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning ...Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning calorimetry( DSC) and scanning electron microscopy( SEM) were used to analyze the effects of irradiation crosslinking on structure and property of FR-PET fabric with TMPTA. The cross-linking was promoted by the introduced sensitizer. The gel content was 5.94% at the lower dose of 90 kGy and it arrived at the highest level of 13.01% with the increased doses. There were no melt drips of FR-PET fabric after irradiation cross-linking while the flame retardance disappeared at the time of combustion. The melting temperature of irradiated fabric decreased and TG analysis showed that the onset temperature of degradation of FR-PET fabric and the amount of nonvolatile residue at 800℃ increased as the irradiation dosage increased,but it changed a little compared with the pure FR-PFT fabric. SEM photographs showed that the residue char of irradiated PET fabrics after vertical test remained the intrinsic crossed structure,and the enlarged graph showed that the char was uniformly distributed and it was tight honeycombs structure.展开更多
基金National Natural Science Foundations of China(Nos.51403112,51273097,51306095)Qingdao Postdoctoral Application Research Funded Project,China(No.2015132)Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,China
文摘Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning calorimetry( DSC) and scanning electron microscopy( SEM) were used to analyze the effects of irradiation crosslinking on structure and property of FR-PET fabric with TMPTA. The cross-linking was promoted by the introduced sensitizer. The gel content was 5.94% at the lower dose of 90 kGy and it arrived at the highest level of 13.01% with the increased doses. There were no melt drips of FR-PET fabric after irradiation cross-linking while the flame retardance disappeared at the time of combustion. The melting temperature of irradiated fabric decreased and TG analysis showed that the onset temperature of degradation of FR-PET fabric and the amount of nonvolatile residue at 800℃ increased as the irradiation dosage increased,but it changed a little compared with the pure FR-PFT fabric. SEM photographs showed that the residue char of irradiated PET fabrics after vertical test remained the intrinsic crossed structure,and the enlarged graph showed that the char was uniformly distributed and it was tight honeycombs structure.