Computational similarity measures have been evaluated in a variety of ways, but few of the validated computational measures are based on a high-level, cognitive criterion of objective similarity. In this paper, we eva...Computational similarity measures have been evaluated in a variety of ways, but few of the validated computational measures are based on a high-level, cognitive criterion of objective similarity. In this paper, we evaluate two popular objective similarity measures by comparing them with face matching performance in human observers. The results suggest that these measures are still limited in predicting human behavior, especially in rejection behavior, but objective measure taking advantage of global and local face characteristics may improve the prediction. It is also suggested that human may set different criterions for“hit” and “rejection”and this may provide implications for biologically-inspired computational systems.展开更多
This paper presents a method which utilizes color, local symmetry and geometry information of human face based on various models. The algorithm first detects most likely face regions or ROIs (Region-Of-Interest) from ...This paper presents a method which utilizes color, local symmetry and geometry information of human face based on various models. The algorithm first detects most likely face regions or ROIs (Region-Of-Interest) from the image using face color model and face outline model, produces a face color similarity map. Then it performs local symmetry detection within these ROIs to obtain a local symmetry similarity map. The two maps and local similarity map are fused to obtain potential facial feature points. Finally similarity matching is performed to identify faces between the fusion map and face geometry model under affine transformation. The output results are the detected faces with confidence values. The experimental results demonstrate its validity and robustness to identify faces under certain variations.展开更多
In this paper, we propose a face recognition approach-Structed Sparse Representation-based classification when the measurement of the test sample is less than the number training samples of each subject. When this con...In this paper, we propose a face recognition approach-Structed Sparse Representation-based classification when the measurement of the test sample is less than the number training samples of each subject. When this condition is not satisfied, we exploit Nearest Subspaee approach to classify the test sample. In order to adapt all the eases, we combine the two approaches to an adaptive classification method-Adaptive approach. The adaptive approach yields greater recognition accuracy than the SRC approach and CRC_RLS approach with low ~ample rate on the Extend Yale B dataset. And it is more efficient than other two approaches.展开更多
基金Supported by the National Basic Research Program of China (Grant No.2006CB303101)the National Natural Science Foundation of China(Grant Nos.60433030,30600182 and 30500157)the Royal Society
文摘Computational similarity measures have been evaluated in a variety of ways, but few of the validated computational measures are based on a high-level, cognitive criterion of objective similarity. In this paper, we evaluate two popular objective similarity measures by comparing them with face matching performance in human observers. The results suggest that these measures are still limited in predicting human behavior, especially in rejection behavior, but objective measure taking advantage of global and local face characteristics may improve the prediction. It is also suggested that human may set different criterions for“hit” and “rejection”and this may provide implications for biologically-inspired computational systems.
文摘This paper presents a method which utilizes color, local symmetry and geometry information of human face based on various models. The algorithm first detects most likely face regions or ROIs (Region-Of-Interest) from the image using face color model and face outline model, produces a face color similarity map. Then it performs local symmetry detection within these ROIs to obtain a local symmetry similarity map. The two maps and local similarity map are fused to obtain potential facial feature points. Finally similarity matching is performed to identify faces between the fusion map and face geometry model under affine transformation. The output results are the detected faces with confidence values. The experimental results demonstrate its validity and robustness to identify faces under certain variations.
基金Supported by National Natural Science Foundation of China(No.61170324 and No.61100105)
文摘In this paper, we propose a face recognition approach-Structed Sparse Representation-based classification when the measurement of the test sample is less than the number training samples of each subject. When this condition is not satisfied, we exploit Nearest Subspaee approach to classify the test sample. In order to adapt all the eases, we combine the two approaches to an adaptive classification method-Adaptive approach. The adaptive approach yields greater recognition accuracy than the SRC approach and CRC_RLS approach with low ~ample rate on the Extend Yale B dataset. And it is more efficient than other two approaches.