We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
A method to calculate the reflectivity of the coated cavity facet was proposed, and the distribution of the optical power near the two coated cavity facets was calculated for GaN-based laser diodes. A new design metho...A method to calculate the reflectivity of the coated cavity facet was proposed, and the distribution of the optical power near the two coated cavity facets was calculated for GaN-based laser diodes. A new design method for reducing the optical power at the two cavity facets without changing the output power of laser diodes was discussed, which is helpful to optimize the cavity facet coating and raise the threshold current at which catastrophic optical damage occurs.展开更多
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
基金supported by the National Natural Science Foundation of China (Grant Nos.60506001,60976045,60836003,60776047 and 61076119) the National Basic Research Program of China ("973" Project) (Grant No. 2007CB936700)the National Science Foundation for Distinguished Yong Scholar (Grant No. 60925017)
文摘A method to calculate the reflectivity of the coated cavity facet was proposed, and the distribution of the optical power near the two coated cavity facets was calculated for GaN-based laser diodes. A new design method for reducing the optical power at the two cavity facets without changing the output power of laser diodes was discussed, which is helpful to optimize the cavity facet coating and raise the threshold current at which catastrophic optical damage occurs.