Age estimation plays an important role in human-computer interaction system.The lack of large number of facial images with definite age label makes age estimation al-gorithms inefficient.Deep label distribution learni...Age estimation plays an important role in human-computer interaction system.The lack of large number of facial images with definite age label makes age estimation al-gorithms inefficient.Deep label distribution learning(DLDL)which employs convolutional neural networks(CNN)and label distribution learning to learn ambiguity from ground-truth age and adjacent ages,has been proven to outperform current state-of-the-art framework.However,DLDL assumes a rough label distribution which covers all ages for any given age label.In this paper,a more practical label distribution paradigm is proposed:we limit age label distribution that only covers a reasonable number of neighboring ages.In addition,we explore different label distributions to improve the performance of the proposed learning model.We employ CNN and the improved label distribution learning to estimate age.Experimental results show that compared to the DLDL,our method is more effective for facial age recognition.展开更多
基金the financial support of the China National Natural Science Foundation(61702095)Natural Science Founda-tion(njpj2018209)of Nanjing Tech University Pujiang Institute,Anhui Polytechnic University Scientific Research Foundation(S031702004)+1 种基金Natural Science Foundation of Fujian Province(2018J01806)Scientific Research Pro-gram of Outstanding Talents in Universities of Fujian。
文摘Age estimation plays an important role in human-computer interaction system.The lack of large number of facial images with definite age label makes age estimation al-gorithms inefficient.Deep label distribution learning(DLDL)which employs convolutional neural networks(CNN)and label distribution learning to learn ambiguity from ground-truth age and adjacent ages,has been proven to outperform current state-of-the-art framework.However,DLDL assumes a rough label distribution which covers all ages for any given age label.In this paper,a more practical label distribution paradigm is proposed:we limit age label distribution that only covers a reasonable number of neighboring ages.In addition,we explore different label distributions to improve the performance of the proposed learning model.We employ CNN and the improved label distribution learning to estimate age.Experimental results show that compared to the DLDL,our method is more effective for facial age recognition.