Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification m...Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification methods, such as support vector machines and Gaussian process classifiers, often struggle with the complexity and nonlinearity of geological data, leading to suboptimal performance. Moreover, numerous prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements from adjacent depths in a well. A novel approach leveraging an attention-based gated recurrent unit (AGRU) model is introduced in this paper to address these challenges. The AGRU model excels by exploiting the sequential nature of well-log data and capturing long-range dependencies through an attention mechanism. This model enables a flexible and context-dependent weighting of different parts of the sequence, enhancing the discernment of key features for classification. The proposed method was validated on two publicly available datasets. Results demonstrate a considerably improvement over traditional methods. Specifically, the AGRU model achieved superior performance metrics considering precision, recall, and F1-score.展开更多
Objective Debris flows are cohesive sediment gravity flows which occur in both subaerial and subaqueous settings. Compared to subaerial debris flows which have been well studied as a geological hazard, subaqueous deb...Objective Debris flows are cohesive sediment gravity flows which occur in both subaerial and subaqueous settings. Compared to subaerial debris flows which have been well studied as a geological hazard, subaqueous debris flows showing complicated sediment composition and sedimentary processes were poorly understood. The main objective of this work is to establish a classification scheme and facies sequence models of subaqueous debris flows for well understanding their sedimentary processes and depositional characteristics.展开更多
基金supported by National Natural Science Fundation(General Program)of China(Grant:61972211).
文摘Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification methods, such as support vector machines and Gaussian process classifiers, often struggle with the complexity and nonlinearity of geological data, leading to suboptimal performance. Moreover, numerous prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements from adjacent depths in a well. A novel approach leveraging an attention-based gated recurrent unit (AGRU) model is introduced in this paper to address these challenges. The AGRU model excels by exploiting the sequential nature of well-log data and capturing long-range dependencies through an attention mechanism. This model enables a flexible and context-dependent weighting of different parts of the sequence, enhancing the discernment of key features for classification. The proposed method was validated on two publicly available datasets. Results demonstrate a considerably improvement over traditional methods. Specifically, the AGRU model achieved superior performance metrics considering precision, recall, and F1-score.
基金jointly funded by the National Natural Science Foundation of China(grants No.41172104,41202078 and 41372117)the Major National S&T Program of China(grant No.2011ZX05009-002)
文摘Objective Debris flows are cohesive sediment gravity flows which occur in both subaerial and subaqueous settings. Compared to subaerial debris flows which have been well studied as a geological hazard, subaqueous debris flows showing complicated sediment composition and sedimentary processes were poorly understood. The main objective of this work is to establish a classification scheme and facies sequence models of subaqueous debris flows for well understanding their sedimentary processes and depositional characteristics.