In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ...In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.展开更多
为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosti...为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosting decision tree,k-shape-STL-GBDT)。首先分析用户用电时序特征,利用k-shape时间序列聚类算法根据负荷曲线划分用户聚类,其次,使用STL算法将不同簇的负荷数据划分为季节项、趋势项与随机项。然后,结合温度、湿度等影响因素搭建预测模型,以麻省大学smart*可再生能源项目的公开数据集为例进行分析,并与多种主流聚类分解预测模型进行对比。结果表明新提出的模型框架MAPE减少了4%以上,针对短期负荷预测表现出了较好的性能与预测精度。展开更多
文摘In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.
文摘为挖掘复杂环境因素对电力负荷预测效果的影响,提高电力负荷预测精确度,提出了一种基于k-shape时间序列聚类与STL季节趋势分解算法相结合的负荷曲线聚类预测模型(k-shape-seasonal and trend decomposition using loess-gradient boosting decision tree,k-shape-STL-GBDT)。首先分析用户用电时序特征,利用k-shape时间序列聚类算法根据负荷曲线划分用户聚类,其次,使用STL算法将不同簇的负荷数据划分为季节项、趋势项与随机项。然后,结合温度、湿度等影响因素搭建预测模型,以麻省大学smart*可再生能源项目的公开数据集为例进行分析,并与多种主流聚类分解预测模型进行对比。结果表明新提出的模型框架MAPE减少了4%以上,针对短期负荷预测表现出了较好的性能与预测精度。