Sealing clearance is a key factor for a metal rubber seal's sealability. The expansion coef- ficient and expansion deformation in the radial direction of metal rubber have been obtained through a thermal expansion ex...Sealing clearance is a key factor for a metal rubber seal's sealability. The expansion coef- ficient and expansion deformation in the radial direction of metal rubber have been obtained through a thermal expansion experiment of metal rubber. The influence of the elastic modulus to the sealing clearance has been analyzed theoretically. By combining the temperature and elasticity factors of metal rubber with the elastic mechanics theory, the calculation formula of the sealing clearance has been derived, and the values of the sealing clearance and the leakage rate in certain working conditions have been calculated. Experimental results are consistent with calculation results in a high degree. The calculation formula of the sealing clearance can explain the influences of the temperature and elastic modulus factors of metal rubber on the sealing clearance. It can pro- vide guidance for the study of sealing mechanism of metal rubber seals.展开更多
We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spe...We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small-to large-Q2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.展开更多
Conceptually,radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei.Accurate values of these quantities are necessary so that one may judge the character...Conceptually,radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei.Accurate values of these quantities are necessary so that one may judge the character of putative solutions to the strong interaction problem within the Standard Model.However,limiting their ability to serve in this role,recent measurements and new analyses of older data have revealed uncertainties and imprecisions in the radii of the proton,pion,kaon,and deuteron.In the context of radius measurement using electron+hadron elastic scattering,the past decade has shown that reliable extraction requires minimisation of bias associated with practitioner-dependent choices of data fitting functions.Different answers to that challenge have been offered;and this perspective describes the statistical Schlessinger point method(SPM),in unifying applications to proton,pion,kaon,and deuteron radii.Grounded in analytic function theory,independent of assumptions about underlying dynamics,free from practitioner-induced bias,and applicable in the same form to diverse systems and observables,the SPM returns an objective expression of the information contained in any data under consideration.Its robust nature and versatility make it suitable for use in many branches of experiment and theory.展开更多
基金supported by the Programme of Introducing Talents of Discipline to Universities(No.B07018)the Air Force Armament Department Pre-Research Foundation
文摘Sealing clearance is a key factor for a metal rubber seal's sealability. The expansion coef- ficient and expansion deformation in the radial direction of metal rubber have been obtained through a thermal expansion experiment of metal rubber. The influence of the elastic modulus to the sealing clearance has been analyzed theoretically. By combining the temperature and elasticity factors of metal rubber with the elastic mechanics theory, the calculation formula of the sealing clearance has been derived, and the values of the sealing clearance and the leakage rate in certain working conditions have been calculated. Experimental results are consistent with calculation results in a high degree. The calculation formula of the sealing clearance can explain the influences of the temperature and elastic modulus factors of metal rubber on the sealing clearance. It can pro- vide guidance for the study of sealing mechanism of metal rubber seals.
基金Supported by the Project of Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX2.YW.W10Sistema Nacional de Investigadores+8 种基金CONACyT grant 46614-Fthe University of Adelaide and the Australian Research Council through Grant No. FL0992247Coordinación de la Investigación Científica (UMSNH) under Grant 4.10the U. S. Department of Energy, Office of Nuclear Physics, Grant No. DE-AC02-06CH11357Fundao de Amparo Pesquisa do Estado de So Paulo, Grant Nos. 2009/51296-1 and 2010/05772-3the National Natural Science Foundation of China under Grant Nos. 10425521, 10675002, 10705002, 10935001 and 11075052the Major State Basic Research Development Program, under Grant No. G2007CB815000Forschungszentrum Jülich GmbHthe U. S.National Science Foundation under Grant No. PHY-0903991, in conjunction with a CONACyT Mexico-USA Collaboration Grant
文摘We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small-to large-Q2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.
基金Supported by the National Natural Science Foundation of China(12135007)Natural Science Foundation of Jiangsu Province(BK20220122)STRONG-2020"The strong interaction at the frontier of knowledge:fundamental research and applications"which received funding from the European Union's Horizon 2020 research and innovation programme(824093)。
文摘Conceptually,radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei.Accurate values of these quantities are necessary so that one may judge the character of putative solutions to the strong interaction problem within the Standard Model.However,limiting their ability to serve in this role,recent measurements and new analyses of older data have revealed uncertainties and imprecisions in the radii of the proton,pion,kaon,and deuteron.In the context of radius measurement using electron+hadron elastic scattering,the past decade has shown that reliable extraction requires minimisation of bias associated with practitioner-dependent choices of data fitting functions.Different answers to that challenge have been offered;and this perspective describes the statistical Schlessinger point method(SPM),in unifying applications to proton,pion,kaon,and deuteron radii.Grounded in analytic function theory,independent of assumptions about underlying dynamics,free from practitioner-induced bias,and applicable in the same form to diverse systems and observables,the SPM returns an objective expression of the information contained in any data under consideration.Its robust nature and versatility make it suitable for use in many branches of experiment and theory.