Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the pa...Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the past few years in the Putaohua reservoir of the Puao Oilfield in the south of the Daqing placanticline by detailed exploration. Based on a study of micro-geological causes of low-resistivity oil layers, the macro-geological controlling factors were analyzed through comprehensive research of regional depositional background, geological structure, and oil-water relations combined with core, water testing, well logging, and scanning electron microscopy data. The results showed that the formation and distribution of Putaohua low-resistivity oil layers in the Puao Oilfield were controlled by depositional environment, sedimentary facies, diagenesis, motive power of hydrocarbon accumulation, and acidity and alkalinity of reservoir liquid. The low-resistivity oil layers caused by high bound-water saturation were controlled by deposition and diagenesis, those caused by high free-water saturation were controlled by structural amplitude and motive power of hydrocarbon accumulation. Those caused by formation water with high salinity were controlled by the ancient saline water depositional environment and faulted structure and those caused by additional conductivity of shale were controlled by paleoclimate and acidity and alkalinity of reservoir liquid. Consideration of both micro-geological causes and macro-geological controlling factors is important in identifying low-resistivity oil layers.展开更多
Previous studies have shown that octamer-binding transcription factor 4(Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage d...Previous studies have shown that octamer-binding transcription factor 4(Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage differentiation which are regulated by DNA methylation. To explore the relationship between the methylation pattern of Oct4 gene exon 1 and embryonic development, in this work, five different tissues(heart, liver, lung, cerebrum and cerebellum) from three germ layers were chosen from low age(50–60 d) and advanced age(60–70 d) of fetal cattle and the differences between tissues or ages were analyzed, respectively. The result showed that the DNA methylation level of Oct4 gene exon 1 was significant different(P〈0.01) between any two of three germ layers in low age(〈60 d), but kept steady of advanced age(P〉0.05)(〉60 d), suggesting that 60-d post coital was an important boundary for embryonic development. In addition, in ectoderm(cerebrum and cerebellum), there was no significant methylation difference of Oct4 gene exon 1 between low age and advanced age(P〉0.05), but the result of endoderm(liver and lung) and mesoderm(heart) were on the contrary(P〈0.01), which indicated the development of ectoderm was earlier than endoderm and mesoderm. The methylation differences from the 3rd, 5th and 9th Cp G-dinucleotide loci of Oct4 gene exon 1 were significantly different between each two of three germ layers(P〈0.05), indicating that these three loci may have important influence on bovine embryonic development. This study showed that bovine germ layers differentiation was significantly related to the DNA methylation status of Oct4 gene exon 1. This work firstly identified the DNA methylation profile of bovine Oct4 gene exon 1 and its association with germ layers development in fetus and adult of cattle. Moreover, the work also provided epigenetic information for further studying bovine embryonic development and cellular reprogramming.展开更多
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust...In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.展开更多
By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried...By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried earth layer are researched. The results show that the average moisture content is 9.3%-9.5% between 2 and 4 m under artificial forest of over 10 year's growth in Guanzhong Plain, and chronic weak dried earth layers are developed which show that the dried earth layers are distributed extensively on the Loess Plateau. The southern boundary of the dried earth layer has reached the northern foot of the Qinling Mountains. When precipitation reaches 600 mm, there are weak dried earth layers between 2 and 4 m under artificial forest of more than 10 years old. When the precipitation is between 400 and 500 mm, there are moderate dried earth layers. When precipitation is above 800 mm, there are no dried earth layers. There are no dried earth layers under meadow land, corn land and less than 5 years old of artificial forestland in central and southern parts of the Loess Plateau. The development of dried earth layers under cypress forest is weaker than broad-leaved forest. Under the same climatic conditions, the development of dried earth layers under the loess tableland is nearly at the same level as the 2nd and 3rd river terrace. Dried earth layers developed in membrane water zone, and the buried depth is small and motion velocity is slow in the Loess Plateau, which is the direct water factor of the formation of the dried earth layer, while differences of tree age and tree species are the plant factors that consumed much moisture. From the depth of the gravity water and the membrane water in Guanzhong Plain, it is clear that the formation cause of dried earth layers is mainly due to natural factors. The dried layers generally develop in middle-aged artificial forestland that consumed too much moisture, which is the general character of earth moisture in subhumid and semiarid zones. The appearance of dried layers doesn't show that the forest doesn't develop in this area; this is depended on their development intensity. Artificial forest of Chinese poplar, locust tree and Chinese scholartree consuming less water can be planted in the areas where dried earth layer developed weakly, but can not be planted in the areas where dried earth layer developed intensely.展开更多
This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current ...This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current impedance can be written directly without solving the undetermined constant equations. The series expression is easy to use for theoretical analysis and programming. Experimental results show that calculated values and measured values are in agreement. As an application, when the bottom layer of the layered plate is a non-ferromagnetic thin layer conductor and the product of the thickness and conductivity of the layer remains unchanged, using the layered-plate factor expression proposed in this paper, it can be theoretically predicted that the eddy-current impedance curves corresponding to different thin layer thickness values will coincide.展开更多
With the objective to create technologically advanced materials to be scientifically applicable, dual-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing h...With the objective to create technologically advanced materials to be scientifically applicable, dual-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The dual-layer silica alumina membrane was prepared by dip coating technique be-fore further drying in an oven at elevated temperature. The effects of substrate physical appear-ance, coating quantity, cross-linking agent, number of coatings and testing conditions on gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream.展开更多
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedint...The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedinterlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.展开更多
Tillage layer thickness (TLT) of farmland could be regarded as one of physical indexes in assessing soil productivity and quality. In recent years, tillage layer shallowing was found in China in various regions, mainl...Tillage layer thickness (TLT) of farmland could be regarded as one of physical indexes in assessing soil productivity and quality. In recent years, tillage layer shallowing was found in China in various regions, mainly due to the adoption of non-tillage or rotary tillage practices, but only little rough and non-quantitative information is available so far on the issue. This research took Anhui, a typical agricultural province in Eastern China as an example and compared the TLTs of 87 typical profiles on provincial scale and 210 on county scale from 1980s to 2010s. The results showed that TLTs of 3.7% and 17.2% of samples in 1980s and 2010s respectively were larger than 20 cm. From 1980s to 2010s the mean TLT increased from 16.3 to 17.4 cm on the provincial scale and from 15.0 to 15.5 cm on the county scale respectively. In the middle and southern regions the mean TLTs increased by 0.4-0.7 cm on the provincial scale and 0.3-3.2 cm on the county scale respectively, but decreased by 2.0 cm in northern region on the county scale. The mean TLT increased by 0.8 cm for paddy-field and 1.4 cm for dry-land on the provincial scale. TLT was influenced comprehensively by the factors of soil texture, the depth of rotary tillage and the farming positivity of the farmers. Generally, TLT of farmland with coarse soil texture was higher than that of farmland with fine soil texture, in 1980s TLT in region of poor-economic condition usually was deeper than in region of good-economic condition, and the adoption of rotary tillage led widely TLTs of farmlands to about 15 cm in 2010s.展开更多
This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap la...This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal- optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.展开更多
The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which ...The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied.展开更多
Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The typ...Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The type of rock mass consisting of an interbedding of strong and weak layers poses difficulties and uncertainties for determining the RMR. For this, the present paper uses the concept of rock bolt supporting factor(RSF) for modification of RMR system to be used in such rock mass types. The proposed method also demonstrates the importance of rock bolting practice in such rock masses. The geological parameters of the Shemshak Formation of the Alborz Tunnel in Iran are used as case examples for development of the theoretical approach.展开更多
Using the pressure gradient as the new variable instead of. the ordinary longitudinal coordinate x, Liu transformed the ordinary laminar boundary equations into a new form. On this base Liu obtained the frictional str...Using the pressure gradient as the new variable instead of. the ordinary longitudinal coordinate x, Liu transformed the ordinary laminar boundary equations into a new form. On this base Liu obtained the frictional stress factor by using the graphical method.In this paper the same variable replacement as in [1] is used and an approximate analytical solution of the laminar boundary layer equations by the series method is obtained. The author also obtains a formula of frictional stress factor. For the case of the main function without the term of constant, the author makes a further simplification. The error of the frictional stress factor obtained by the author is still less than 10%, compared with that of [1].展开更多
A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy...A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy viscosity is evaluated based on computational results from a two-equation turbulence model in which the eddy viscosity varies with time and space. The present eddy viscosity model simplifies much of the mathematical complexity in many existing models. Predictions from the present model have been compared with a wide range of experimental data. It is found that the eddy viscosity model adopted in the present study is physically reasonable.展开更多
In this paper, we consider the numerical treatment of an inverse acoustic scattering problem that involves an impenetrable obstacle embedded in a layered medium. We begin by employing a modified version of the well kn...In this paper, we consider the numerical treatment of an inverse acoustic scattering problem that involves an impenetrable obstacle embedded in a layered medium. We begin by employing a modified version of the well known <em>factorization method</em>, in which a computationally effective numerical scheme for the reconstruction of the shape of the scatterer is presented. This is possible, due to a <em>mixed reciprocity principle</em>, which renders the computation of the Green function at the background medium unnecessary. Moreover, to further refine our inversion algorithm, an efficient Tikhonov parameter choice technique, called <em>Improved Maximum Product Criterion</em> (IMPC) is exploited. Our regularization parameter is computed via a fast iterative algorithm which requires no <em>a priori</em> knowledge of the noise level in the far-field data. Finally, the effectiveness of IMPC is illustrated with various numerical examples.展开更多
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are c...Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.展开更多
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Han...This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.展开更多
We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is d...We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electron’s trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.展开更多
基金supported by the National Natural ScienceFoundation Project(No.40173023)
文摘Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the past few years in the Putaohua reservoir of the Puao Oilfield in the south of the Daqing placanticline by detailed exploration. Based on a study of micro-geological causes of low-resistivity oil layers, the macro-geological controlling factors were analyzed through comprehensive research of regional depositional background, geological structure, and oil-water relations combined with core, water testing, well logging, and scanning electron microscopy data. The results showed that the formation and distribution of Putaohua low-resistivity oil layers in the Puao Oilfield were controlled by depositional environment, sedimentary facies, diagenesis, motive power of hydrocarbon accumulation, and acidity and alkalinity of reservoir liquid. The low-resistivity oil layers caused by high bound-water saturation were controlled by deposition and diagenesis, those caused by high free-water saturation were controlled by structural amplitude and motive power of hydrocarbon accumulation. Those caused by formation water with high salinity were controlled by the ancient saline water depositional environment and faulted structure and those caused by additional conductivity of shale were controlled by paleoclimate and acidity and alkalinity of reservoir liquid. Consideration of both micro-geological causes and macro-geological controlling factors is important in identifying low-resistivity oil layers.
基金supported by the Natural Science Foundation of Shaanxi Province, China (2014JQ3104)the National Natural Science Foundation of China (31000655)China Postdoctoral Science Foundation funded project (2014M560809)
文摘Previous studies have shown that octamer-binding transcription factor 4(Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage differentiation which are regulated by DNA methylation. To explore the relationship between the methylation pattern of Oct4 gene exon 1 and embryonic development, in this work, five different tissues(heart, liver, lung, cerebrum and cerebellum) from three germ layers were chosen from low age(50–60 d) and advanced age(60–70 d) of fetal cattle and the differences between tissues or ages were analyzed, respectively. The result showed that the DNA methylation level of Oct4 gene exon 1 was significant different(P〈0.01) between any two of three germ layers in low age(〈60 d), but kept steady of advanced age(P〉0.05)(〉60 d), suggesting that 60-d post coital was an important boundary for embryonic development. In addition, in ectoderm(cerebrum and cerebellum), there was no significant methylation difference of Oct4 gene exon 1 between low age and advanced age(P〉0.05), but the result of endoderm(liver and lung) and mesoderm(heart) were on the contrary(P〈0.01), which indicated the development of ectoderm was earlier than endoderm and mesoderm. The methylation differences from the 3rd, 5th and 9th Cp G-dinucleotide loci of Oct4 gene exon 1 were significantly different between each two of three germ layers(P〈0.05), indicating that these three loci may have important influence on bovine embryonic development. This study showed that bovine germ layers differentiation was significantly related to the DNA methylation status of Oct4 gene exon 1. This work firstly identified the DNA methylation profile of bovine Oct4 gene exon 1 and its association with germ layers development in fetus and adult of cattle. Moreover, the work also provided epigenetic information for further studying bovine embryonic development and cellular reprogramming.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009087)
文摘In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
基金Foundation: National Natural Science Foundation of China, No.40672108 Project of State Key Laboratory of Loess and Quaternary Geology, CAS, No.SKLLQG0606
文摘By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried earth layer are researched. The results show that the average moisture content is 9.3%-9.5% between 2 and 4 m under artificial forest of over 10 year's growth in Guanzhong Plain, and chronic weak dried earth layers are developed which show that the dried earth layers are distributed extensively on the Loess Plateau. The southern boundary of the dried earth layer has reached the northern foot of the Qinling Mountains. When precipitation reaches 600 mm, there are weak dried earth layers between 2 and 4 m under artificial forest of more than 10 years old. When the precipitation is between 400 and 500 mm, there are moderate dried earth layers. When precipitation is above 800 mm, there are no dried earth layers. There are no dried earth layers under meadow land, corn land and less than 5 years old of artificial forestland in central and southern parts of the Loess Plateau. The development of dried earth layers under cypress forest is weaker than broad-leaved forest. Under the same climatic conditions, the development of dried earth layers under the loess tableland is nearly at the same level as the 2nd and 3rd river terrace. Dried earth layers developed in membrane water zone, and the buried depth is small and motion velocity is slow in the Loess Plateau, which is the direct water factor of the formation of the dried earth layer, while differences of tree age and tree species are the plant factors that consumed much moisture. From the depth of the gravity water and the membrane water in Guanzhong Plain, it is clear that the formation cause of dried earth layers is mainly due to natural factors. The dried layers generally develop in middle-aged artificial forestland that consumed too much moisture, which is the general character of earth moisture in subhumid and semiarid zones. The appearance of dried layers doesn't show that the forest doesn't develop in this area; this is depended on their development intensity. Artificial forest of Chinese poplar, locust tree and Chinese scholartree consuming less water can be planted in the areas where dried earth layer developed weakly, but can not be planted in the areas where dried earth layer developed intensely.
基金supported by the National Natural Science Foundation of China(Grant No.51577004)
文摘This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current impedance can be written directly without solving the undetermined constant equations. The series expression is easy to use for theoretical analysis and programming. Experimental results show that calculated values and measured values are in agreement. As an application, when the bottom layer of the layered plate is a non-ferromagnetic thin layer conductor and the product of the thickness and conductivity of the layer remains unchanged, using the layered-plate factor expression proposed in this paper, it can be theoretically predicted that the eddy-current impedance curves corresponding to different thin layer thickness values will coincide.
文摘With the objective to create technologically advanced materials to be scientifically applicable, dual-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The dual-layer silica alumina membrane was prepared by dip coating technique be-fore further drying in an oven at elevated temperature. The effects of substrate physical appear-ance, coating quantity, cross-linking agent, number of coatings and testing conditions on gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream.
基金the National Science Foundation for Excellent Young Investigators(10325208)the National Natural Science Foundation of China(10432030)the China Postdoctoral Science Foundation(2004036018)
文摘The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedinterlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.
文摘Tillage layer thickness (TLT) of farmland could be regarded as one of physical indexes in assessing soil productivity and quality. In recent years, tillage layer shallowing was found in China in various regions, mainly due to the adoption of non-tillage or rotary tillage practices, but only little rough and non-quantitative information is available so far on the issue. This research took Anhui, a typical agricultural province in Eastern China as an example and compared the TLTs of 87 typical profiles on provincial scale and 210 on county scale from 1980s to 2010s. The results showed that TLTs of 3.7% and 17.2% of samples in 1980s and 2010s respectively were larger than 20 cm. From 1980s to 2010s the mean TLT increased from 16.3 to 17.4 cm on the provincial scale and from 15.0 to 15.5 cm on the county scale respectively. In the middle and southern regions the mean TLTs increased by 0.4-0.7 cm on the provincial scale and 0.3-3.2 cm on the county scale respectively, but decreased by 2.0 cm in northern region on the county scale. The mean TLT increased by 0.8 cm for paddy-field and 1.4 cm for dry-land on the provincial scale. TLT was influenced comprehensively by the factors of soil texture, the depth of rotary tillage and the farming positivity of the farmers. Generally, TLT of farmland with coarse soil texture was higher than that of farmland with fine soil texture, in 1980s TLT in region of poor-economic condition usually was deeper than in region of good-economic condition, and the adoption of rotary tillage led widely TLTs of farmlands to about 15 cm in 2010s.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60876007 and 10974165)the Research Program of Xiamen Municipal Science and Technology Bureau,China (Grant No. 2006AA03Z110)
文摘This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal- optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.
文摘The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied.
文摘Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The type of rock mass consisting of an interbedding of strong and weak layers poses difficulties and uncertainties for determining the RMR. For this, the present paper uses the concept of rock bolt supporting factor(RSF) for modification of RMR system to be used in such rock mass types. The proposed method also demonstrates the importance of rock bolting practice in such rock masses. The geological parameters of the Shemshak Formation of the Alborz Tunnel in Iran are used as case examples for development of the theoretical approach.
文摘Using the pressure gradient as the new variable instead of. the ordinary longitudinal coordinate x, Liu transformed the ordinary laminar boundary equations into a new form. On this base Liu obtained the frictional stress factor by using the graphical method.In this paper the same variable replacement as in [1] is used and an approximate analytical solution of the laminar boundary layer equations by the series method is obtained. The author also obtains a formula of frictional stress factor. For the case of the main function without the term of constant, the author makes a further simplification. The error of the frictional stress factor obtained by the author is still less than 10%, compared with that of [1].
文摘A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy viscosity is evaluated based on computational results from a two-equation turbulence model in which the eddy viscosity varies with time and space. The present eddy viscosity model simplifies much of the mathematical complexity in many existing models. Predictions from the present model have been compared with a wide range of experimental data. It is found that the eddy viscosity model adopted in the present study is physically reasonable.
文摘In this paper, we consider the numerical treatment of an inverse acoustic scattering problem that involves an impenetrable obstacle embedded in a layered medium. We begin by employing a modified version of the well known <em>factorization method</em>, in which a computationally effective numerical scheme for the reconstruction of the shape of the scatterer is presented. This is possible, due to a <em>mixed reciprocity principle</em>, which renders the computation of the Green function at the background medium unnecessary. Moreover, to further refine our inversion algorithm, an efficient Tikhonov parameter choice technique, called <em>Improved Maximum Product Criterion</em> (IMPC) is exploited. Our regularization parameter is computed via a fast iterative algorithm which requires no <em>a priori</em> knowledge of the noise level in the far-field data. Finally, the effectiveness of IMPC is illustrated with various numerical examples.
基金The project supported by National Natural Science Foundation of China (10632020, 10672017 and 20451057)
文摘Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.
基金Project supported by the National Natural Science Foundation of China(No.10772123)the Natural Science Fund of Hebei Province(No.E2006000398).
文摘This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.
文摘We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electron’s trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.