Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insid...Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insidious water-conductive faults. The influence of normal and shear stresses on fault activation and effective shear stress distribution in the fault plane was acquired under mining conditions.Using fracture mechanics theory to calculate the stress intensity factor of an insidious fault front, we have derived the criterion for main fault activation. Results indicate that during the whole working face advance, transpressions are exerted on fault planes twice successively in opposite directions. In most cases, the second transpression is more likely to lead to fault activation. Activation is influenced by many factors, predominant among which are: burial depth of the insidious fault, friction angle of the fault plane, face advance direction and pore water pressure. Steep fault planes are more easily activated to induce a sustained water inrush in the face.展开更多
A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken ba...A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken bar fault can be detected. The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these,the fault severity factor which is completely independent of the inertia and load level is defined. Moreover,a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.展开更多
Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation cha...Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation changes removal, and by using the 3-D inversion method to reflect underground density, we analyze the characteristics of Longmenshan regional dynamic crustal density at depths of 25km, 20km and 15kin. The results show that in the Wenchuan earthquake preparation process, the regional density field showed marked characteristics both in time and space distribution. From the point of time process, the density change trend in the ten years before the earthquake presents a periodic change pattern: steady phase, dramatic stage, slow reducing phase and slow increase phase. The degree of density changes is from large to small, which means that earthquake gestation has reached the final stage. From the point of space distribution, density change distribution has a tendency of "dispersion--relative concentration", this shows that before the earthquake, the entropy of the underground density field was decreased. In addition, dramatic density changes often occur in the Longmenshan fault zone and western Sichuan plateau. Also, with the increase of depth, the trend of density change is more and more obvious. Through comparative analysis, the influence of density change on gravity is much bigger than that from height change.展开更多
This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Ele...This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.展开更多
基金funded by the Major Basic Research and Development Program of China(No.2014CB046905)the Ph.D.Programs Foundation of Ministry of Education of China(No.20130095110018)
文摘Based on the stress field distribution rule of the mining floor under abutment pressure, we have established a simplified mechanical model, which contains multiple factors relating to activation and evolution of insidious water-conductive faults. The influence of normal and shear stresses on fault activation and effective shear stress distribution in the fault plane was acquired under mining conditions.Using fracture mechanics theory to calculate the stress intensity factor of an insidious fault front, we have derived the criterion for main fault activation. Results indicate that during the whole working face advance, transpressions are exerted on fault planes twice successively in opposite directions. In most cases, the second transpression is more likely to lead to fault activation. Activation is influenced by many factors, predominant among which are: burial depth of the insidious fault, friction angle of the fault plane, face advance direction and pore water pressure. Steep fault planes are more easily activated to induce a sustained water inrush in the face.
基金Project (No. 50677060) supported by the National Natural ScienceFoundation of China
文摘A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken bar fault can be detected. The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these,the fault severity factor which is completely independent of the inertia and load level is defined. Moreover,a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.
基金funded by the National Natural Science Foundation of China(41330314)Projects of Science for Earthquake Resilience(XH15049Y)+1 种基金National Science and Technology Support Program of China(2012BAK19B02,2012BAK19B03)Special Research Foundation for Seismology(201108009)
文摘Based on the repeated gravity observation data from 1996 to 2007 from the Longmenshan gravity network, which has been dealt with by adjustment processing, the benchmark interference removal and impact of elevation changes removal, and by using the 3-D inversion method to reflect underground density, we analyze the characteristics of Longmenshan regional dynamic crustal density at depths of 25km, 20km and 15kin. The results show that in the Wenchuan earthquake preparation process, the regional density field showed marked characteristics both in time and space distribution. From the point of time process, the density change trend in the ten years before the earthquake presents a periodic change pattern: steady phase, dramatic stage, slow reducing phase and slow increase phase. The degree of density changes is from large to small, which means that earthquake gestation has reached the final stage. From the point of space distribution, density change distribution has a tendency of "dispersion--relative concentration", this shows that before the earthquake, the entropy of the underground density field was decreased. In addition, dramatic density changes often occur in the Longmenshan fault zone and western Sichuan plateau. Also, with the increase of depth, the trend of density change is more and more obvious. Through comparative analysis, the influence of density change on gravity is much bigger than that from height change.
基金co-supported by the National Natural Science Foundation of China(Nos.51620105010,51675019 and 51575019)the National Basic Research Program of China(No.2014CB046402)+1 种基金the Fundamental Research Funds for the Central Universities of China(YWF-17-BJ-Y-105)the "111" Project of China
文摘This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.