Additive hazards model with random effects is proposed for modelling the correlated failure time data when focus is on comparing the failure times within clusters and on estimating the correlation between failure time...Additive hazards model with random effects is proposed for modelling the correlated failure time data when focus is on comparing the failure times within clusters and on estimating the correlation between failure times from the same cluster, as well as the marginal regression parameters. Our model features that, when marginalized over the random effect variable, it still enjoys the structure of the additive hazards model. We develop the estimating equations for inferring the regression parameters. The proposed estimators are shown to be consistent and asymptotically normal under appropriate regularity conditions. Furthermore, the estimator of the baseline hazards function is proposed and its asymptotic properties are also established. We propose a class of diagnostic methods to assess the overall fitting adequacy of the additive hazards model with random effects. We conduct simulation studies to evaluate the finite sample behaviors of the proposed estimators in various scenarios. Analysis of the Diabetic Retinopathy Study is provided as an illustration for the proposed method.展开更多
Recurrent event data often arises in biomedical studies, and individuals within a cluster might not be independent. We propose a semiparametric additive rates model for clustered recurrent event data, wherein the cova...Recurrent event data often arises in biomedical studies, and individuals within a cluster might not be independent. We propose a semiparametric additive rates model for clustered recurrent event data, wherein the covariates are assumed to add to the unspecified baseline rate. For the inference on the model parameters, estimating equation approaches are developed, and both large and finite sample properties of the proposed estimators are established.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11171263,11201350 and 11371299)Doctoral Fund of Ministry of Education of China(Grant Nos.20110141110004 and 20110141120004)Fundamental Research Funds for the Central Universities
文摘Additive hazards model with random effects is proposed for modelling the correlated failure time data when focus is on comparing the failure times within clusters and on estimating the correlation between failure times from the same cluster, as well as the marginal regression parameters. Our model features that, when marginalized over the random effect variable, it still enjoys the structure of the additive hazards model. We develop the estimating equations for inferring the regression parameters. The proposed estimators are shown to be consistent and asymptotically normal under appropriate regularity conditions. Furthermore, the estimator of the baseline hazards function is proposed and its asymptotic properties are also established. We propose a class of diagnostic methods to assess the overall fitting adequacy of the additive hazards model with random effects. We conduct simulation studies to evaluate the finite sample behaviors of the proposed estimators in various scenarios. Analysis of the Diabetic Retinopathy Study is provided as an illustration for the proposed method.
基金supported by International Cooperation Projects (2010DFA31790) of Chinese Ministry of Science and Technologythe fund of Central China Normal University for Ph.D students (No. 2009023)+2 种基金supported by the National Natural Science Foundation of China Grants(No. 10731010, 10971015 and 11021161)the National Basic Research Program of China (973 Program) (No.2007CB814902)Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics& Systems Science, Chinese Academy of Sciences (No. 2008DP173182)
文摘Recurrent event data often arises in biomedical studies, and individuals within a cluster might not be independent. We propose a semiparametric additive rates model for clustered recurrent event data, wherein the covariates are assumed to add to the unspecified baseline rate. For the inference on the model parameters, estimating equation approaches are developed, and both large and finite sample properties of the proposed estimators are established.