Many rock types have naturally occurring inherent anisotropic planes, such as bedding planes, foliation,or flow structures. Such characteristic induces directional features and anisotropy in rocks' strength anddeform...Many rock types have naturally occurring inherent anisotropic planes, such as bedding planes, foliation,or flow structures. Such characteristic induces directional features and anisotropy in rocks' strength anddeformational properties. The HoekeBrown (HeB) failure criterion is an empirical strength criterionwidely applied to rock mechanics and engineering. A direct modification to HeB failure criterion toaccount for rock anisotropy is considered as the base of the research. Such modification introduced a newdefinition of the anisotropy as direct parameter named the anisotropic parameter (Kb). However, thecomputation of this parameter takes much experimental work and cannot be calculated in a simple way.The aim of this paper is to study the trend of the relation between the degree of anisotropy (Rc) and theminimum value of anisotropic parameter (Kmin), and to predict the Kmin directly from the uniaxialcompression tests instead of triaxial tests, and also to decrease the amount of experimental work. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the pas...To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.展开更多
文摘Many rock types have naturally occurring inherent anisotropic planes, such as bedding planes, foliation,or flow structures. Such characteristic induces directional features and anisotropy in rocks' strength anddeformational properties. The HoekeBrown (HeB) failure criterion is an empirical strength criterionwidely applied to rock mechanics and engineering. A direct modification to HeB failure criterion toaccount for rock anisotropy is considered as the base of the research. Such modification introduced a newdefinition of the anisotropy as direct parameter named the anisotropic parameter (Kb). However, thecomputation of this parameter takes much experimental work and cannot be calculated in a simple way.The aim of this paper is to study the trend of the relation between the degree of anisotropy (Rc) and theminimum value of anisotropic parameter (Kmin), and to predict the Kmin directly from the uniaxialcompression tests instead of triaxial tests, and also to decrease the amount of experimental work. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金The authors are grateful to the financial support from the National Natural Science Foundation of China(Grant No.41831290)the Key R&D Project from Zhejiang Province,China(Grant No.2020C03092).
文摘To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.