期刊文献+
共找到620,160篇文章
< 1 2 250 >
每页显示 20 50 100
Clinical prediction scores predicting weaning failure from invasive mechanical ventilation:Role and limitations
1
作者 Anish Gupta Omender Singh Deven Juneja 《World Journal of Critical Care Medicine》 2024年第4期13-24,共12页
Invasive mechanical ventilation(IMV)has become integral to modern-day critical care.Even though critically ill patients frequently require IMV support,weaning from IMV remains an arduous task,with the reported weaning... Invasive mechanical ventilation(IMV)has become integral to modern-day critical care.Even though critically ill patients frequently require IMV support,weaning from IMV remains an arduous task,with the reported weaning failure(WF)rates being as high as 50%.Optimizing the timing for weaning may aid in reducing time spent on the ventilator,associated adverse effects,patient discomfort,and medical care costs.Since weaning is a complex process and WF is often multifactorial,several weaning scores have been developed to predict WF and aid decision-making.These scores are based on the patient's physiological and ventilatory parameters,but each has limitations.This review highlights the current role and limitations of the various clinical prediction scores available to predict WF. 展开更多
关键词 Clinical scores Invasive mechanical ventilation RSBI WEANING Weaning failure
下载PDF
Tensile Mechanical Behavior and Failure Mechanism of a Plain-Woven SiCf/SiC Composites at Room and Elevated Temperatures
2
作者 Jianze He Xuefeng Teng +3 位作者 Xiao’an Hu Xiao Luo Qi Zeng Xueqiang Cao 《Journal of Materials Science and Chemical Engineering》 2024年第4期67-83,共17页
Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I... Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes. 展开更多
关键词 Plain-Woven SiCf/SiC Composites Damage and failure Analysis Stitching Hole
下载PDF
Mechanical model for failure modes of rock and soil under compression 被引量:2
3
作者 汤连生 桑海涛 +2 位作者 宋晶 罗珍贵 孙银磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2711-2723,共13页
The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil s... The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse. 展开更多
关键词 failure mode inner tensile stress tensile failure effective conversion coefficient of energy mechanical criteria
下载PDF
APPLICATION OF MULTI-SENSOR DATA FUSION BASED ON FUZZY NEURAL NETWORK IN ROTA TING MECHANICAL FAILURE DIAGNOSIS 被引量:1
4
作者 周洁敏 林刚 +1 位作者 宫淑丽 陶云刚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期91-96,共6页
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se... At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter. 展开更多
关键词 MULTI-SENSOR data fus ion fuzzy neural network rotating mechanical fault diagnosis grade of members hip
下载PDF
Failure mechanism and infrared radiation characteristic of hard siltstone induced by stratification effect 被引量:1
5
作者 CHENG Yun SONG Zhanping +2 位作者 XU Zhiwei YANG Tengtian TIAN Xiaoxu 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1058-1074,共17页
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora... The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass. 展开更多
关键词 Hard siltstone failure mechanism Stratification effect Infrared radiation characteristic Temporal-damage mechanism DISSIMILATION
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
6
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanISMS
下载PDF
Exploring battery material failure mechanisms through synchrotron X-ray characterization techniques 被引量:1
7
作者 Lingzhe Fang Xiaozhao Liu Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期128-135,共8页
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch... Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism. 展开更多
关键词 Battery failure Synchrotron-based techniques X-ray scattering X-ray absorption spectroscopy
下载PDF
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
8
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
9
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
Disturbance failure mechanism of highly stressed rock in deep excavation:Current status and prospects 被引量:1
10
作者 Tao Wang Weiwei Ye +3 位作者 Liyuan Liu Kai Liu Naisheng Jiang Xianhui Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期611-627,共17页
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre... This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions. 展开更多
关键词 deep rock with high stress highly stressed rock rock failure residual stress energy release
下载PDF
Mechanism of principal stress rotation and deformation failure behavior induced by excavation in roadways
11
作者 Jianping Zuo Zongyu Ma +2 位作者 Chengyi Xu Shuaifei Zhan Haiyan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4605-4624,共20页
The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati... The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state. 展开更多
关键词 Roadway stress field Principal stress rotation Roadway failure mechanism failure characteristics
下载PDF
Evolution model and failure mechanisms of rainfall-induced cracked red clay slopes:insights from Xinshao County,China
12
作者 JIAO Weizhi ZHANG Ming +4 位作者 LI Peng XIE Junjin PANG Haisong LIU Fuxing YANG Long 《Journal of Mountain Science》 SCIE CSCD 2024年第3期867-881,共15页
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro... Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings. 展开更多
关键词 Red clay slopes Cracks Preferential flow failure mechanism
下载PDF
A review of extreme condition effects on solder joint reliability:Understanding failure mechanisms
13
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +2 位作者 Azuraida Amat Nor Azlian Abdul Manaf Nurazlin Ahmad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期134-158,共25页
Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w... Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance. 展开更多
关键词 Solder joint Extreme condition failure mechanism Defence and military RELIABILITY
下载PDF
Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries
14
作者 Mingming Tao Junning Chen +5 位作者 Hongxin Lin Yingao Zhou Danhui Zhao Peizhao Shan Yanting Jin Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期226-248,共23页
Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume ch... Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume changes during lithium deposition/stripping processes lead to sustained accumulation of inactive lithium and poor cycling reversibility.Quantifying the formation and evolution of inactive lithium under different conditions and fully evaluating the complex failure modes are the key issues in this challenging field.This article comprehensively reviews recent research progress on the quantification of formation and evolution of inactive lithium detected by different quantitative techniques in rechargeable lithium metal batteries.The key research challenges such as failure mechanism,modification strategies and operando characterization of lithium metal anodes are systematically summarized and prospected.This review provides a new angle of view to understand failure mechanism of lithium metal anodes and inspiration and guidance for the future development of rechargeable lithium metal batteries. 展开更多
关键词 Lithium metal anodes Inactive lithium Quantitative technique failure mechanism
下载PDF
Pressure stimulated current in progressive failure process of combined coal-rock under uniaxial compression:Response and mechanism
15
作者 Tiancheng Shan Zhonghui Li +7 位作者 Xin Zhang Haishan Jia Xiaoran Wang Enyuan Wang Yue Niu Dong Chen Weichen Sun Dongming Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期227-243,共17页
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun... Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment. 展开更多
关键词 Combined coal-rock Pressure stimulated current Progressive failure process mechanISM Flow model
下载PDF
Ground response and failure mechanism of gob-side entry by roof cutting with hard main roof
16
作者 ZHU Heng-zhong XU Lei WEN Zhi-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2488-2512,共25页
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi... This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices. 展开更多
关键词 gob-side entry by roof cutting ground response failure mechanism following mining states control hard main roof
下载PDF
Investigation on the mechanism of Qiangxinhuoli prescription in the treatment of chronic heart failure based on p38-MAPK signaling pathway
17
作者 Di Guo Qiu-Han Zheng +2 位作者 Di Wang Zhi Pan Xiao-Ling Shang 《Traditional Medicine Research》 2024年第7期13-24,共12页
Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failu... Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury. 展开更多
关键词 chronic heart failure Qiangxinhuoli prescription p38MAPK pathway H_(9)C_(2) Action mechanism
下载PDF
Macro-micro behaviors and failure mechanism of frozen weakly cemented mudstone
18
作者 Xianzhou Lyu Jijie Du +2 位作者 Hao Fu Dawei Lyu Weiming Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1337-1347,共11页
Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in c... Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in cold regions.In this study,the triaxial compression test are performed on mudstone in the weakly cemented soft rock strata in the mining area of western China,and the mechanical characteristics and failure mechanism of weakly cemented mudstone are systematically investigated under the combined action of freezing and loading.Furthermore,the quantitative relationship between the microstructural parameters and the macroscopic strength and deformation parameters is established based on fractal theory.Thus,the failure mechanism of frozen weakly cemented mudstone is revealed on both micro- and macro-scales.The results show that temperature and confining pressure significantly affects the elastic modulus and peak strength of weakly cemented mudstone.With decreasing temperature,the compressive strength increases,while the corresponding peak strain decreases gradually.On the deformation curve,the plastic deformation stage is shortened,and the brittle fracture feature at the post-peak stage is more prominent,and the elastic modulus correspondingly increases with decreasing temperature.Under low-temperature conditions,most of the weakly cemented mudstone undergoes microscopic shear failure along the main fracture surface.The micro-fracture morphology characteristics of weakly cemented mudstone under different temperatures are quantified via the fractal dimension,and an approximately exponential relationship can be obtained among the fractal dimension and the temperature,compressive strength and elastic modulus. 展开更多
关键词 Weakly cemented mudstone Artificial freezing mechanical properties Linkage destruction mechanism Fractal dimension
下载PDF
Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model
19
作者 Chenxi Xiu Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2305-2338,共34页
This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstru... This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element. 展开更多
关键词 Granular materials MICROmechanICS Cosserat elastoplastic model MICROSTRUCTURES failure behaviors
下载PDF
Local failure mechanism of sand-blocking fence in latticed dune along desert roads
20
作者 LI Liangying LV Lele +3 位作者 LI Qi WANG Zhenqiang YANG Youhai YIN Wenhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期526-537,共12页
The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe o... The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added. 展开更多
关键词 Latticed dune Sand-blocking fence Local failure Numerical simulation Desert roads
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部