Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,...Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.展开更多
Fake reviews,also known as deceptive opinions,are used to mislead people and have gained more importance recently.This is due to the rapid increase in online marketing transactions,such as selling and purchasing.E-com...Fake reviews,also known as deceptive opinions,are used to mislead people and have gained more importance recently.This is due to the rapid increase in online marketing transactions,such as selling and purchasing.E-commerce provides a facility for customers to post reviews and comment about the product or service when purchased.New customers usually go through the posted reviews or comments on the website before making a purchase decision.However,the current challenge is how new individuals can distinguish truthful reviews from fake ones,which later deceives customers,inflicts losses,and tarnishes the reputation of companies.The present paper attempts to develop an intelligent system that can detect fake reviews on ecommerce platforms using n-grams of the review text and sentiment scores given by the reviewer.The proposed methodology adopted in this study used a standard fake hotel review dataset for experimenting and data preprocessing methods and a term frequency-Inverse document frequency(TF-IDF)approach for extracting features and their representation.For detection and classification,n-grams of review texts were inputted into the constructed models to be classified as fake or truthful.However,the experiments were carried out using four different supervised machine-learning techniques and were trained and tested on a dataset collected from the Trip Advisor website.The classification results of these experiments showed that na飗e Bayes(NB),support vector machine(SVM),adaptive boosting(AB),and random forest(RF)received 88%,93%,94%,and 95%,respectively,based on testing accuracy and tje F1-score.The obtained results were compared with existing works that used the same dataset,and the proposed methods outperformed the comparable methods in terms of accuracy.展开更多
文摘Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.
文摘Fake reviews,also known as deceptive opinions,are used to mislead people and have gained more importance recently.This is due to the rapid increase in online marketing transactions,such as selling and purchasing.E-commerce provides a facility for customers to post reviews and comment about the product or service when purchased.New customers usually go through the posted reviews or comments on the website before making a purchase decision.However,the current challenge is how new individuals can distinguish truthful reviews from fake ones,which later deceives customers,inflicts losses,and tarnishes the reputation of companies.The present paper attempts to develop an intelligent system that can detect fake reviews on ecommerce platforms using n-grams of the review text and sentiment scores given by the reviewer.The proposed methodology adopted in this study used a standard fake hotel review dataset for experimenting and data preprocessing methods and a term frequency-Inverse document frequency(TF-IDF)approach for extracting features and their representation.For detection and classification,n-grams of review texts were inputted into the constructed models to be classified as fake or truthful.However,the experiments were carried out using four different supervised machine-learning techniques and were trained and tested on a dataset collected from the Trip Advisor website.The classification results of these experiments showed that na飗e Bayes(NB),support vector machine(SVM),adaptive boosting(AB),and random forest(RF)received 88%,93%,94%,and 95%,respectively,based on testing accuracy and tje F1-score.The obtained results were compared with existing works that used the same dataset,and the proposed methods outperformed the comparable methods in terms of accuracy.