Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions des...A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions describing the dehumidifying process are set up. Calcium chloride is applied as the desiccant. The dehumidifying process between falling liquid desiccant film and process air is analyzed and calculated by the control volume approach. Velocity field, temperature distribution and outlet parameters for both the process air and desiccant solution are obtained. The effects of inlet conditions and vertical wall height on the dehumidification process are also predicted. The results show that the humidity ratio, temperature and mass fraction of salt decrease rapidly at the inlet region but slowly at the outlet region along the vertical wall height. The dehumidification processes can be enhanced by increasing the vertical wall height, desiccant solution flow rates or inlet salt concentration in the desiccant solution, respectively. Similarly, the dehumidification process can be improved by decreasing the inlet humidity ratio or flow rates of the process air. The obtained results can improve the performance of the dehumidifier and provide the theoretical basis for the optimization design, and the ooeration and modulation of the solar liquid desiccant air-conditioning systems.展开更多
Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction...Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.展开更多
The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to ...The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to the effects of the physical properties and geometrical parameters of the first two forms(droplets and jets) because these forms are more important in heat-transfer behaviour and less research has been published for these forms,The flow modes and experimental results were successfully compared with previous experimental literatures,and also the effects of liquid flow rate,tube diameter,and tube spacing on departure site spacing,in both drop and jet modes,were evaluated in the low Galileo number and high viscosity fluid(cooking oil),to help developing criteria for determining falling film modes and their transitions,and to understand the heat transfer characteristics associated with each mode.展开更多
Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including cryst...Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including crystallizing time, flow rate of melt and temperature of glycerine bath, on purity of DDDA and crystallizing rate were investigated. Over 99% (by mole) DDDA was obtained for a feed composition of 96% (by mole). The main factors affecting the separation efficiency are flow rate of melt and temperature of glycerine bath. The crystallizing layer of DDDA was further purified by sweating and blasting. A set of optimized operation data are provided for better understanding the mechanism of heat and mass transfer in FFC, and for further industrial application of DDDA purification process.展开更多
As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the fal...As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.展开更多
The flow in a liquid falling film is predominantly laminar,and the liquid-side mass transfer is limited by molecular diffusion.The effective way to enhance the mass transfer is to improve the liquid film flow behavior...The flow in a liquid falling film is predominantly laminar,and the liquid-side mass transfer is limited by molecular diffusion.The effective way to enhance the mass transfer is to improve the liquid film flow behavior.The falling film behaviors of water,ethanol and ethylene glycol in nine different wavy microchannels were simulated by Computational Fluid Dynamics.The simulation results show that the falling film thickness exhibits a waveform distribution resulting in a resonance phenomenon along the wavy microchannel.The fluctuation of liquid film surface increases the gas-liquid interface area,and the internal eddy flow inside the liquid film also improves the turbulence of liquid film,the gas-liquid mass transfer in falling film microchannels is intensified.Compared with flat microchannel,the CO_(2) absorption efficiency in water in the wavy microchannel is improved over 41%.Prediction models of liquid film amplitude and average liquid film thickness were established respectively.展开更多
The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative h...The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.展开更多
Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution betwee...Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.展开更多
A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a...A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.展开更多
A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convectiv...A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function. Consequently, velocity and temperature gradients are eliminated, and the complete formulation is written in terms of velocity and temperature. This provides considerable reduction in storage and computational requirements while improving accuracy. The non-linear equation systems of boundary element discretization are solved by the quasi-Newton iterative scheme with Broyden's update. The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained, and the variations of Nusselt numbers along the wall-liquid interface are also given. There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave. This special flow and thermal process can be a mechanism to enhance heat transport.展开更多
The interfacial evaporation of falling water films with wall heating was experimentally studied and analyzed. The results presented in this paper showed that the capillary induced interfacial evaporation played an ...The interfacial evaporation of falling water films with wall heating was experimentally studied and analyzed. The results presented in this paper showed that the capillary induced interfacial evaporation played an important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux and somewhat lower than that without wall heating for impure fluids such as water air system. The thermodynamic analysis conducted gave a theoretical basis for the experimental observations. The effective capillary radius was correlated with the mass flow rate. The experimental results and analysis showed that the interfacial evaporation should be taken into account in the study of falling liquid film heat transfer.展开更多
Shell and tube heat exchangers(STHE)are essential thermal equipment and widely used in daily life.A novel thermosyphon system called falling-film thermosyphon(FFTS)is introduced and integrated into STHE system,resulti...Shell and tube heat exchangers(STHE)are essential thermal equipment and widely used in daily life.A novel thermosyphon system called falling-film thermosyphon(FFTS)is introduced and integrated into STHE system,resulting in a better thermal performance.In this study,a rectangular solid tube bank of FFTS bundles with a baffle design is studied.The numerical simulation for heat and mass transfer of the FFTS heat exchanger is developed to predict the condensation rate of the vapor in the flue gas,and a lab-scale prototype is also built up in COMSOL.The prediction is validated with the experimental data from references,and the model’s accuracy is verified within 10%-12%error.Also,the Non-dominated Sorting Genetic Algorithm,version 2(NSGA-II)is implemented to improve the thermal performance of rectangular tube banks in this paper.Several parameters,e.g.,baffle number,tube number,and tube space,are optimized.As a result,compact configurations with more baffles are preferred to enhance the performance associated with a high-pressure drop correspondingly.The optimized layout for the lab-scale prototype can increase by 18 to 32%condensation with a pressure loss of less than 200 Pa.展开更多
This paper presents a two-dimensional CFD study of the falling film evaporation of horizontal tubes with different shapes applied in the seawater desalination. The flow and heat transfer characteristics of the falling...This paper presents a two-dimensional CFD study of the falling film evaporation of horizontal tubes with different shapes applied in the seawater desalination. The flow and heat transfer characteristics of the falling water film on one circular tube and two non-circular shaped tubes, a drop-shaped tube and an oval-shaped tube, are analyzed, respectively. The Volume Of Fluid (VOF) method is employed to investigate the influence of the mass flow rate and the feeder height on the distribution of the film thickness and the heat transfer performance. The numerical results show that the minimum value of the film thickness appears approximately at the angular positions of 125~, 160~ and 170~ for the smooth circular, oval- and drop-shaped tubes, respectively.The film thickness grows with the increase of the mass flow rate and the decrease of the feeder height, while the variation pattern varies for different tubes. Moreover, compared with the circular tube, the drop- and oval-shaped tubes have a lower dimensionless temperature and a thinner thermal boundary layer, which means a better heat transfer performance. Finally, the numerical results correlate well with the experimental and predicted data in literature.展开更多
Falling film generation process in lithium bromide absorption refrigeration generation system is researched in thispaper. To describe the coupled heat and mass transfer of laminar falling film in vertical generation t...Falling film generation process in lithium bromide absorption refrigeration generation system is researched in thispaper. To describe the coupled heat and mass transfer of laminar falling film in vertical generation tube, a mathematicalmodel is developed, in which the effect of mass transfer on heat transfer is carefully evaluated. Moreover,an equation related Re number with solution volume flow was also obtained in given conditions. We carried outthe experiments with the mass fraction of the inlet solution LiBr being 49.5% and obtained an empirical correlationof heat transfer with the film Re number and heat flux in different volume flow. Specifically, when 5kW/m2<qw<25kW/m2 and Re<500 the heat transfer correlation is given as: h=14009.87qw0.0764Re-0.5391.展开更多
The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two ...The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two cylinders. The volume of fluid method is used to track the motion of liquid falling film and the gas-liquid interface. The effect of flow characteristics on heat and transfer coefficient may be remarkable, although it has been neglected in previous studies. The velocity distribution and the film thickness characteristics on the top tube, some special flow characteristics on the bottom tube, intertube flow modes and effect of liquid feeder height on flow characteristics have been studied. Our simulations indicate that 1) the velocity distributions of the upper and lower parts of the tube are not strictly symmetric and non- uniform, 2) the film thickness depends on flow rate and angular distributions, 3) the flow characteristics of the top tube are different from those of the bottom tube, 4) three principal and two intermediate transition modes are distinguished, and 5) the liquid feed height plays an important role on the formation of falling film. The numerical results are in a good agreement with the theoretical values by the Nusselt model and the reported results.展开更多
For utilization of the residual heat of flue gas to drive the absorption chillers,a lithium-bromide falling film in vertical tube type generator is presented.A mathematical model was developed to simulate the heat and...For utilization of the residual heat of flue gas to drive the absorption chillers,a lithium-bromide falling film in vertical tube type generator is presented.A mathematical model was developed to simulate the heat and mass coupled problem of laminar falling film evaporation in vertical tube.In the model,the factor of mass transfer was taken into account in heat transfer performance calculation.The temperature and concentration fields were calculated.Some tests were conducted for the factors such as Re number,heating flux,the inlet concentration and operating pressure which can affect the heat and mass transfer performance in laminar falling film evaporation.The heat transfer performance is enhanced with the increasing of heat flux.An increasing inlet concentration can weaken the heat transfer performance.The operating pressure hardly affects on heat and mass transfer.The bigger inlet Re number means weaker heat transfer effects and stronger mass transfer.The mass transfer obviously restrains the heat transfer in the falling film solution.The relation between dimensionless heat transfer coefficient and the inlet Re number is obtained.展开更多
A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evoluti...A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evolutionary process were investigated. The results indicated that the inner concentrations of 10 mg/L sulfadiazine can be all removed within 30 min. The optimum pH value was 9.10 and both strong acidic and alkaline solution conditions were not suitable for the degradation. The degradation of sulfadiazine can be enhanced by the addition of hydrogen radical scavengers, but be inhibited by adding hydroxyl radical scavengers. The water falling film dielectric barrier discharge was rather ineffective in mineralization, because of the intermediates were recalcitrant to be degraded. The existence of Fe2+ and CCI4 in the liquid phase can promote the degradation and mineralization of sulfadiazine. It was found that the degradation of SDZ was enhanced by CC14 was mainly because of the increase of'OH due to the reaction of CC14 with *H that reduce the chances of their recombination with "OH. Based on the 8 intermediate products identified by LC-MS, the proposed evolution of the degradation process was investigated.展开更多
As an efficient and energy-saving heat exchange technology, horizontal tube falling film evaporation has a great application prospect in refrigeration and air conditioning. The three-dimensional models of falling film...As an efficient and energy-saving heat exchange technology, horizontal tube falling film evaporation has a great application prospect in refrigeration and air conditioning. The three-dimensional models of falling film flow evaporation outside horizontal single tube and inside evaporator were established, and the accuracy of flow and heat transfer simulation process was verified by comparison. For horizontal single tube, the results showed that total heat transfer coefficient was low and increased with larger spray density and evaporation temperature. The thickness of liquid film outside tube decreased gradually with the increase of tube diameter, and the total heat transfer coefficient of small tube diameter was significantly greater than that of the large tube diameter. The total heat transfer coefficient presented an increasing trend with larger liquid distribution height and density. In addition, the fluctuation of tube axial liquid film thickness distribution decreased with larger liquid distribution density. For evaporator, the results indicated that part of liquid refrigerant was carried into the vapor outlet. The temperature of tube wall and fluid presented a gradually rising trend in vertical downward direction, while tube wall temperature within the same horizontal and transverse row had little difference. The high-temperature zone on the outer wall of heat exchange tube moved towards the inlet and gradually decreased, and the outlet temperature of water in the tube also gradually decreased with the increase of refrigerant spray density. The local heat transfer coefficient of heat exchanger tube in the vertical direction presented a downward trend which was more obvious with the smaller spray density and it was obviously higher located in the middle of upper tube row and both sides of lower tube row for horizontal tube rows.展开更多
NH_3-H_2O falling film absorption usually takes place with low solution flow rate in real absorption refrigeration system. An experimental study of inner vertical absorption is carried out for the consideration of air...NH_3-H_2O falling film absorption usually takes place with low solution flow rate in real absorption refrigeration system. An experimental study of inner vertical absorption is carried out for the consideration of air-cooling absorber. Variable working conditions are tested to evaluate the heat and mass transfer performances.The traditional evaluation method based on log-mean-temperature(concentration) difference is criticized for its lack of theoretical basis while simultaneous heat and mass transfer process occurs. A new method proposed by Kim and Infante Ferreira is modified to evaluate the experimental results with reasonable assumptions. The method is based on the derivation of coupled heat and mass transfer differential equations of NH_3-H_2O absorption process.The analysis of the same experimental data shows that the new method realizes better consistency with smaller error, especially in heat transfer aspect. Heat and mass transfer performance is enhanced with the increase of solution Reynolds number. Sub-cooling of inlet weak solution also has positive influence on the absorption process,which should be evaluated by the new method correctly. Two correlations are developed to evaluate both Nusselt and Sherwood numbers for the design of air-cooling absorber.展开更多
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
基金The National Natural Science Foundation of China(No50276013)
文摘A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions describing the dehumidifying process are set up. Calcium chloride is applied as the desiccant. The dehumidifying process between falling liquid desiccant film and process air is analyzed and calculated by the control volume approach. Velocity field, temperature distribution and outlet parameters for both the process air and desiccant solution are obtained. The effects of inlet conditions and vertical wall height on the dehumidification process are also predicted. The results show that the humidity ratio, temperature and mass fraction of salt decrease rapidly at the inlet region but slowly at the outlet region along the vertical wall height. The dehumidification processes can be enhanced by increasing the vertical wall height, desiccant solution flow rates or inlet salt concentration in the desiccant solution, respectively. Similarly, the dehumidification process can be improved by decreasing the inlet humidity ratio or flow rates of the process air. The obtained results can improve the performance of the dehumidifier and provide the theoretical basis for the optimization design, and the ooeration and modulation of the solar liquid desiccant air-conditioning systems.
基金Supported by the National Natural Science Foundation of China(51503154,51776141)Major Projects of China Water Pollution Control and Treatment Science and Technology(2017ZX07202005)
文摘Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.
基金supported by New Product Development of Small and Medium Business Administration(SMBA)funded by the Ministry of Education,Science and Technology (No. 2011-0021376) through the Basic Science Program of the National Research Foundation of Korea(NRF)
文摘The flow pattern behaviour of falling liquid film over three horizontal cylinders was evaluated.These flows can take three forms:discrete droplets,individual jets,and continuous sheet,and special attention is paid to the effects of the physical properties and geometrical parameters of the first two forms(droplets and jets) because these forms are more important in heat-transfer behaviour and less research has been published for these forms,The flow modes and experimental results were successfully compared with previous experimental literatures,and also the effects of liquid flow rate,tube diameter,and tube spacing on departure site spacing,in both drop and jet modes,were evaluated in the low Galileo number and high viscosity fluid(cooking oil),to help developing criteria for determining falling film modes and their transitions,and to understand the heat transfer characteristics associated with each mode.
文摘Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including crystallizing time, flow rate of melt and temperature of glycerine bath, on purity of DDDA and crystallizing rate were investigated. Over 99% (by mole) DDDA was obtained for a feed composition of 96% (by mole). The main factors affecting the separation efficiency are flow rate of melt and temperature of glycerine bath. The crystallizing layer of DDDA was further purified by sweating and blasting. A set of optimized operation data are provided for better understanding the mechanism of heat and mass transfer in FFC, and for further industrial application of DDDA purification process.
基金supported by the National Natural Science Foundation of China(U21B2085)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+2 种基金the China Postdoctoral Science Foundation(2021M703587)the Qingdao Postdoctoral Applied Research Project(qdyy20200096)Fundamental Research Funds for the Central Universities(20CX06076A)
文摘As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.
基金supported by the National Natural Science Foundation of China(Grant No.21576168)。
文摘The flow in a liquid falling film is predominantly laminar,and the liquid-side mass transfer is limited by molecular diffusion.The effective way to enhance the mass transfer is to improve the liquid film flow behavior.The falling film behaviors of water,ethanol and ethylene glycol in nine different wavy microchannels were simulated by Computational Fluid Dynamics.The simulation results show that the falling film thickness exhibits a waveform distribution resulting in a resonance phenomenon along the wavy microchannel.The fluctuation of liquid film surface increases the gas-liquid interface area,and the internal eddy flow inside the liquid film also improves the turbulence of liquid film,the gas-liquid mass transfer in falling film microchannels is intensified.Compared with flat microchannel,the CO_(2) absorption efficiency in water in the wavy microchannel is improved over 41%.Prediction models of liquid film amplitude and average liquid film thickness were established respectively.
基金Supported by the National Natural Science Foundation of China (No. 59995550-3) and Science Funds from the Ministry of Education (No. 97000357).
文摘The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.
基金Project(2016YFC0700100)supported by the National Key R&D Program of ChinaProject(JDJQ20160103)supported by the Promotion of the Connotation Development Quota Project of Colleges and Universities-Outstanding Youth of Architectural University,China。
文摘Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.
基金financial support provided by National Natural Science Foundation of China(21978243)。
文摘A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.
基金This project was financially supported by the National Natural Science Foundation of China
文摘A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function. Consequently, velocity and temperature gradients are eliminated, and the complete formulation is written in terms of velocity and temperature. This provides considerable reduction in storage and computational requirements while improving accuracy. The non-linear equation systems of boundary element discretization are solved by the quasi-Newton iterative scheme with Broyden's update. The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained, and the variations of Nusselt numbers along the wall-liquid interface are also given. There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave. This special flow and thermal process can be a mechanism to enhance heat transport.
基金the National Natural Science Foundationof China (No.5 9995 5 5 0 - 3)
文摘The interfacial evaporation of falling water films with wall heating was experimentally studied and analyzed. The results presented in this paper showed that the capillary induced interfacial evaporation played an important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux and somewhat lower than that without wall heating for impure fluids such as water air system. The thermodynamic analysis conducted gave a theoretical basis for the experimental observations. The effective capillary radius was correlated with the mass flow rate. The experimental results and analysis showed that the interfacial evaporation should be taken into account in the study of falling liquid film heat transfer.
文摘Shell and tube heat exchangers(STHE)are essential thermal equipment and widely used in daily life.A novel thermosyphon system called falling-film thermosyphon(FFTS)is introduced and integrated into STHE system,resulting in a better thermal performance.In this study,a rectangular solid tube bank of FFTS bundles with a baffle design is studied.The numerical simulation for heat and mass transfer of the FFTS heat exchanger is developed to predict the condensation rate of the vapor in the flue gas,and a lab-scale prototype is also built up in COMSOL.The prediction is validated with the experimental data from references,and the model’s accuracy is verified within 10%-12%error.Also,the Non-dominated Sorting Genetic Algorithm,version 2(NSGA-II)is implemented to improve the thermal performance of rectangular tube banks in this paper.Several parameters,e.g.,baffle number,tube number,and tube space,are optimized.As a result,compact configurations with more baffles are preferred to enhance the performance associated with a high-pressure drop correspondingly.The optimized layout for the lab-scale prototype can increase by 18 to 32%condensation with a pressure loss of less than 200 Pa.
基金support by the Shandong Province Key Scientific and Technological Project (Grant No. 2008GG10007009)the Science and Technology Development Planning of Shandong Province (Grant No. 2012GGX10421)
文摘This paper presents a two-dimensional CFD study of the falling film evaporation of horizontal tubes with different shapes applied in the seawater desalination. The flow and heat transfer characteristics of the falling water film on one circular tube and two non-circular shaped tubes, a drop-shaped tube and an oval-shaped tube, are analyzed, respectively. The Volume Of Fluid (VOF) method is employed to investigate the influence of the mass flow rate and the feeder height on the distribution of the film thickness and the heat transfer performance. The numerical results show that the minimum value of the film thickness appears approximately at the angular positions of 125~, 160~ and 170~ for the smooth circular, oval- and drop-shaped tubes, respectively.The film thickness grows with the increase of the mass flow rate and the decrease of the feeder height, while the variation pattern varies for different tubes. Moreover, compared with the circular tube, the drop- and oval-shaped tubes have a lower dimensionless temperature and a thinner thermal boundary layer, which means a better heat transfer performance. Finally, the numerical results correlate well with the experimental and predicted data in literature.
文摘Falling film generation process in lithium bromide absorption refrigeration generation system is researched in thispaper. To describe the coupled heat and mass transfer of laminar falling film in vertical generation tube, a mathematicalmodel is developed, in which the effect of mass transfer on heat transfer is carefully evaluated. Moreover,an equation related Re number with solution volume flow was also obtained in given conditions. We carried outthe experiments with the mass fraction of the inlet solution LiBr being 49.5% and obtained an empirical correlationof heat transfer with the film Re number and heat flux in different volume flow. Specifically, when 5kW/m2<qw<25kW/m2 and Re<500 the heat transfer correlation is given as: h=14009.87qw0.0764Re-0.5391.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 20976118).
文摘The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two cylinders. The volume of fluid method is used to track the motion of liquid falling film and the gas-liquid interface. The effect of flow characteristics on heat and transfer coefficient may be remarkable, although it has been neglected in previous studies. The velocity distribution and the film thickness characteristics on the top tube, some special flow characteristics on the bottom tube, intertube flow modes and effect of liquid feeder height on flow characteristics have been studied. Our simulations indicate that 1) the velocity distributions of the upper and lower parts of the tube are not strictly symmetric and non- uniform, 2) the film thickness depends on flow rate and angular distributions, 3) the flow characteristics of the top tube are different from those of the bottom tube, 4) three principal and two intermediate transition modes are distinguished, and 5) the liquid feed height plays an important role on the formation of falling film. The numerical results are in a good agreement with the theoretical values by the Nusselt model and the reported results.
文摘For utilization of the residual heat of flue gas to drive the absorption chillers,a lithium-bromide falling film in vertical tube type generator is presented.A mathematical model was developed to simulate the heat and mass coupled problem of laminar falling film evaporation in vertical tube.In the model,the factor of mass transfer was taken into account in heat transfer performance calculation.The temperature and concentration fields were calculated.Some tests were conducted for the factors such as Re number,heating flux,the inlet concentration and operating pressure which can affect the heat and mass transfer performance in laminar falling film evaporation.The heat transfer performance is enhanced with the increasing of heat flux.An increasing inlet concentration can weaken the heat transfer performance.The operating pressure hardly affects on heat and mass transfer.The bigger inlet Re number means weaker heat transfer effects and stronger mass transfer.The mass transfer obviously restrains the heat transfer in the falling film solution.The relation between dimensionless heat transfer coefficient and the inlet Re number is obtained.
基金supported by the State Key Laboratory of Pollution Control&Resources Reuse
文摘A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evolutionary process were investigated. The results indicated that the inner concentrations of 10 mg/L sulfadiazine can be all removed within 30 min. The optimum pH value was 9.10 and both strong acidic and alkaline solution conditions were not suitable for the degradation. The degradation of sulfadiazine can be enhanced by the addition of hydrogen radical scavengers, but be inhibited by adding hydroxyl radical scavengers. The water falling film dielectric barrier discharge was rather ineffective in mineralization, because of the intermediates were recalcitrant to be degraded. The existence of Fe2+ and CCI4 in the liquid phase can promote the degradation and mineralization of sulfadiazine. It was found that the degradation of SDZ was enhanced by CC14 was mainly because of the increase of'OH due to the reaction of CC14 with *H that reduce the chances of their recombination with "OH. Based on the 8 intermediate products identified by LC-MS, the proposed evolution of the degradation process was investigated.
基金financially supported by National Natural Science Foundation of China (No. 52006031)international cooperation project of China Manned Space Program (6903001173)。
文摘As an efficient and energy-saving heat exchange technology, horizontal tube falling film evaporation has a great application prospect in refrigeration and air conditioning. The three-dimensional models of falling film flow evaporation outside horizontal single tube and inside evaporator were established, and the accuracy of flow and heat transfer simulation process was verified by comparison. For horizontal single tube, the results showed that total heat transfer coefficient was low and increased with larger spray density and evaporation temperature. The thickness of liquid film outside tube decreased gradually with the increase of tube diameter, and the total heat transfer coefficient of small tube diameter was significantly greater than that of the large tube diameter. The total heat transfer coefficient presented an increasing trend with larger liquid distribution height and density. In addition, the fluctuation of tube axial liquid film thickness distribution decreased with larger liquid distribution density. For evaporator, the results indicated that part of liquid refrigerant was carried into the vapor outlet. The temperature of tube wall and fluid presented a gradually rising trend in vertical downward direction, while tube wall temperature within the same horizontal and transverse row had little difference. The high-temperature zone on the outer wall of heat exchange tube moved towards the inlet and gradually decreased, and the outlet temperature of water in the tube also gradually decreased with the increase of refrigerant spray density. The local heat transfer coefficient of heat exchanger tube in the vertical direction presented a downward trend which was more obvious with the smaller spray density and it was obviously higher located in the middle of upper tube row and both sides of lower tube row for horizontal tube rows.
文摘NH_3-H_2O falling film absorption usually takes place with low solution flow rate in real absorption refrigeration system. An experimental study of inner vertical absorption is carried out for the consideration of air-cooling absorber. Variable working conditions are tested to evaluate the heat and mass transfer performances.The traditional evaluation method based on log-mean-temperature(concentration) difference is criticized for its lack of theoretical basis while simultaneous heat and mass transfer process occurs. A new method proposed by Kim and Infante Ferreira is modified to evaluate the experimental results with reasonable assumptions. The method is based on the derivation of coupled heat and mass transfer differential equations of NH_3-H_2O absorption process.The analysis of the same experimental data shows that the new method realizes better consistency with smaller error, especially in heat transfer aspect. Heat and mass transfer performance is enhanced with the increase of solution Reynolds number. Sub-cooling of inlet weak solution also has positive influence on the absorption process,which should be evaluated by the new method correctly. Two correlations are developed to evaluate both Nusselt and Sherwood numbers for the design of air-cooling absorber.