期刊文献+
共找到16,744篇文章
< 1 2 250 >
每页显示 20 50 100
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting
1
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
2
作者 Xintao Wu Chengcheng Li +7 位作者 Ziqi Zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin Zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Evaluation of Water Losses by Evaporation in the Nakanbe Basin
3
作者 Bayala Alfred Kabre Sayouba +5 位作者 Yonli Hamma Fabien Chesneau Xavier Thierry Sikoudouin Maurice Ky Zeghmati Belkacem Kieno P. Florent Kam Sié 《Atmospheric and Climate Sciences》 2024年第1期29-41,共13页
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e... A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020. 展开更多
关键词 Numerical Study evaporation Meteorological Data Natural Convection BASINS DAMS
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:4
4
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 APPLICATIONS carbon‐based materials evaporATOR photothermal conversion water evaporation
下载PDF
A Model for Droplet Evaporation
5
作者 Pirooz Mohazzabi Gabrielle A. Richardson Gwendolyn A. Richardson 《Journal of Applied Mathematics and Physics》 2023年第7期1837-1845,共9页
Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more s... Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more sophisticated models for water, such as the kinetic model and the Kulmala model. Findings indicate that complete evaporation of a 1-mm-radius mercury droplet, in a ventilated room at normal temperatures, should take about 1.8 × 10<sup>4</sup> seconds or 5 hours. The findings of this study can be utilized to direct further research in the field of toxin remediation. 展开更多
关键词 evaporation RATE MERCURY DROPLET RADIUS
下载PDF
Janus membrane with enhanced interfacial activation for solar evaporation
6
作者 Hao Chen Guangze Pan +3 位作者 Mei Yan Fang Wang Yadong Wu Chongshen Guo 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期1-11,I0002,共12页
Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To ove... Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To overcome these problems,we designed an amphiphilic Janus-structured polyaniline(PANI)/ZrC/cellulose acetate(CA)(J-PZCA) membrane.Firstly,the interfacial interaction between PANI and ZrC enhances the photoabsorption and photothermal conversion efficiency.Secondly,low thermal conductivity reduces the heat lost at the interface.Most importantly,ZrC could facilitate interfacial activation,which weakens the intermolecular forces of water by affecting the hydrogen bond.Under 1 solar irradiation(1 sun),the composite membrane exhibits a high evaporation rate of 1.31 kg m^(-2)h^(-1) and an excellent efficiency of 79.4%.In addition,the sewage purification and seawater desalination experiments reveal a remarkable purification capability of J-PZCA membrane.Especially for the treatment of high-concentration salt solution,it realizes a long-term stable evaporation performance due to the excellent salt deposition resistance.Therefore,the J-PZCA membrane constructed in this study provides a new perspective for the design of efficient interfacial evaporation devices. 展开更多
关键词 Interfacial water evaporation Photothermal synergy Interfacial activation ZRC PANI
下载PDF
Boosting extraction of Pb in contaminated soil via interfacial solar evaporation of multifunctional sponge
7
作者 Pan Wu Xuan Wu +3 位作者 Yida Wang Jingyuan Zhao Haolan Xu Gary Owens 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1459-1468,共10页
Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a s... Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a sodium alginate(SA)impregnated sponge with a surface layer of reduced graphene oxide(rGO)to act as a photothermal conversion medium and then subsequently evaluated for its ability to enhance Pb extraction from contaminated soil driven by interfacial solar evaporation.The SA loaded sponge had a Pb adsorption capacity of 107.4 mg g^(-1).Coating the top surface of the SA sponge with rGO increased water evaporation performance to 1.81 kg m^(-2)h^(-1)in soil media under one sun illumination and with a wind velocity of 2 m s^(-1).Over 12 continuous days of indoor evaporation testing,the Pb extraction efficiency was increased by 22.0%under 1 sun illumination relative to that observed without illumination.Subsequently,Pb extraction was further improved by 48.9%under outdoor evaporation conditions compared to indoor conditions.Overall,this initial work shows the significant potential of interfacial solar evaporation technologies for Pb contaminated soil remediation,which should also be applicable to a variety of other environmental contaminants. 展开更多
关键词 Photothermal materials Interfacial solar evaporation Reduced graphene oxide Pb extraction Soil remediation
下载PDF
Facile synthesis of chromium chloride/poly(methyl methacrylate) core/shell nanocapsules by inverse miniemulsion evaporation method and application as delayed crosslinker in secondary oil recovery
8
作者 Jing-Yang Pu Keith P.Johnston +4 位作者 Ping-Keng Wu Muaaz Ahmad Ming-Liang Luo Na Zhang Ju-Tao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期396-406,共11页
Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not lo... Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not long enough for in-depth placement.In this study,we report a novel synthesis method to obtain chromium chloride/poly(methyl methacrylate)(PMMA)nanocapsules which can significantly delay the gelation of HPAM through encapsulating the chromium chloride crosslinker.The chromium chloride-loaded nanocapsules(CreNC)are prepared via a facile inverse miniemulsion evaporation method during which the hydrophobic PMMA polymers,pre-dispersed in an organic solvent,were carefully controlled to precipitate onto stable aqueous miniemulsion droplets.The stable aqueous nanodroplets(W)containing Cr(III)are dispersed in a mixture of organic solvent(O1)with PMMA and nonsolvent medium(O2)to prepare an inverse miniemulsion.With the evaporation of the O1,PMMA forms CreNCs around the aqueous droplets.The CreNCs are readily transferred into water from the organic nonsolvent phase.The CreNCs exhibit the tunable size(358-983 nm),Cr loading(7.1%-19.1%),and Cr entrapment efficiency(11.7%-80.2%),with tunable zeta potentials in different PVA solutions.The CreNCs can delay release of Cr(III)and prolong the gelation time of HPAM up to 27 days. 展开更多
关键词 NANOCAPSULES Inverse miniemulsion evaporation Chromium chloride crosslinker HPAM gelation Secondary oil recovery
下载PDF
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation
9
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 Micro–nano water film Interfacial solar evaporation Solar desalination Artificial neural networks PPy sponge
下载PDF
Controllable growth of wafer-scale PdS and PdS_(2) nanofilms via chemical vapor deposition combined with an electron beam evaporation technique
10
作者 Hui Gao Hongyi Zhou +6 位作者 Yulong Hao Guoliang Zhou Huan Zhou Fenglin Gao Jinbiao Xiao Pinghua Tang Guolin Hao 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期64-71,共8页
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd... Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices. 展开更多
关键词 PDS PdS_(2) NANOFILMS controllable growth chemical vapor deposition electron beam evaporation
下载PDF
Experimental study on the desulfurization and evaporation characteristics of Ca(OH)_(2) droplets
11
作者 Yilin Song Yize Zhang Hao Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期127-135,共9页
The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisper... The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing. 展开更多
关键词 Magnified digital in-line holography evaporation Gas–liquid absorption reaction Ca(OH)_(2) Micro-droplet
下载PDF
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
12
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Chemical Scissors Tailored Nano‑Tellurium with High‑Entropy Morphology for Efficient Foam‑Hydrogel‑Based Solar Photothermal Evaporators
13
作者 Chenyang Xing Zihao Li +4 位作者 Ziao Wang Shaohui Zhang Zhongjian Xie Xi Zhu Zhengchun Peng 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期149-168,共20页
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(... The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions. 展开更多
关键词 TELLURIUM High entropy Electrochemical modification Solar absorption evaporation rate
下载PDF
Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation 被引量:11
14
作者 史阳 杨坤德 +1 位作者 杨益新 马远良 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期193-201,共9页
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on elect... The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consis- tent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean. 展开更多
关键词 horizontal inhomogeneity evaporation duct electromagnetic wave propagation evaporation duct experiment
下载PDF
Modeling and simulation of urea-water-solution droplet evaporation and thermolysis processes for SCR systems 被引量:7
15
作者 Xubo Gan Dongwei Yao +3 位作者 Feng Wu Jiawei Dai Lai Wei Xingwen Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1065-1073,共9页
A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient con... A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems. 展开更多
关键词 SCR UWS evaporation UREA THERMOLYSIS Semi-detailed KINETIC Simulation
下载PDF
Trend in pan evaporation and its attribution over the past 50 years in China 被引量:12
16
作者 LIU Min SHEN Yanjun +1 位作者 ZENG Yan LIU Changming 《Journal of Geographical Sciences》 SCIE CSCD 2010年第4期557-568,共12页
Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with diff... Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming. 展开更多
关键词 pan evaporation Mann-Kendall test diurnal temperature range wind speed compete correlation China
下载PDF
On analyzing space-time distribution of evaporation duct height over the global ocean 被引量:8
17
作者 YANG Kunde ZHANG Qi +3 位作者 SHI Yang HE Zhengyao LEI Bo HAN Yina 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期20-29,共10页
The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and ... The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and spatial resolutions of 1 h and 0.313°x0.312°, respectively. The efficiency of the analysis was evaluated by processing weather buoy data from the Pacific Ocean and measuring propagation loss in the Yellow Sea of China. The distribution features of evaporation duct height (EDH) and the related meteorological factors for different seas were analyzed. The global EDH is generally high and demonstrates a latitudinal distribution for oceans at low latitudes. The average EDH is approximately 11 m over oceans beside the equator with a latitude of less than 20°. The reasons for the formation of the global EDH features were also analyzed for different sea areas. 展开更多
关键词 evaporation duct reanalysis data electromagnetic wave space-time distributions
下载PDF
Impurities evaporation from metallurgical-grade silicon in electron beam melting process 被引量:5
18
作者 WANG Qiang DONG Wei TAN Yi JIANG Dachuan ZHANG Cong PENG Xu 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期274-277,共4页
The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly ... The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly after melting, and magnesium is partially removed. However, no significant change in content for boron and iron has been found. Langmuir's equation and Henry law were used to derive the removal effi-ciency for each impurity element. The free surface temperature was estimated by the Hertz-Knudsen-Langmuir equation and silicon's vapor pressure equation. Good agreement was found between measured and calculated impurities' removal efficiency for phosphorus, calcium and aluminum, magnesium, boron and iron. The deviation between the two results was also analyzed in depth. 展开更多
关键词 electron beam melting SILICON evaporation IMPURITIES removal efficiency
下载PDF
Analytical and numerical studies on a single-droplet evaporation and combustion under forced convection 被引量:5
19
作者 L.X.Zhou K.Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期523-530,共8页
Existing droplet evaporation/combustion mod- els in computational fluid dynamics (CFD) simulation of spray combustion are based on simplified 1-D models. Both these models and recently developed 3-D models of single... Existing droplet evaporation/combustion mod- els in computational fluid dynamics (CFD) simulation of spray combustion are based on simplified 1-D models. Both these models and recently developed 3-D models of single- droplet combustion do not give the conditions for the different existing droplet combustion modes. In this paper, droplet evaporation and combustion are studied both analytically and numerically. In the analytical solution, a 2-D axisymmetric flow surrounding an evaporating and combusting droplet was considered. The governing equations were solved using an integral method, similar to the Karman-Pohlhausen method for solving boundary-layer flows with pressure gradient. The results give a local evaporation rate and flame radius in agree- ment with experimental results. In numerical simulation, 3-D combusting gas flows surrounding an ethanol droplet were studied. The prediction results show three modes of droplet combustion under different relative velocities, explaining the change in the evaporation constant with an increase in relative velocity observed in experiments. This implies that different droplet combustion models should be developed in simu- lating spray combustion. The predicted local evaporation rate and flame radius by numerical simulation are in agree- ment with the analytical solution in the range of azimuthal angles 0° 〈 θ 〈 90°. The numerical results indicate that the drag force of an evaporating and combusting droplet is much smaller than that of a cold solid particle, and thus the currently used drag models should be modified. 展开更多
关键词 Droplet evaporation and combustion Dropletcombustion modes Numerical simulation
下载PDF
Formation regularity of phases in nanometer powders of Al-Fe alloy prepared by gas evaporation 被引量:5
20
作者 严红革 陈振华 +3 位作者 康智涛 袁武华 孙亦 黄培云 《中国有色金属学会会刊:英文版》 CSCD 2000年第5期653-655,共3页
Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show tha... Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show that chemical composition of the master alloy is the key factor which controls the chemical composition of the compound phases in nanometer powders at given evaporating temperature, the compound phases with high Fe mole fraction will form with increasing of Fe content in master alloy. Only Al 13 Fe 4, FeAl 2 and Al 2Fe compound phases form in nanometer powders in present experiment, changing of the pressure of Ar can only alter relative amounts of the compound phases in the powders. Nanometer particles with inhomogeneous tissue were obtained, which is very different from that of pure Al and Fe nanometer particles. When mole fraction of Fe in particles increases, the inhomogeneity is enhanced. [ 展开更多
关键词 GAS evaporation vapor CONDENSATION NANOMETER powders Al Fe alloy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部