The project was carried out to determine the effects of different fallow types on soil derived from sand stone of low nutrient status in south western Nigeria. The different fallow types include Leu-caena, elephant gr...The project was carried out to determine the effects of different fallow types on soil derived from sand stone of low nutrient status in south western Nigeria. The different fallow types include Leu-caena, elephant grass, guinea grass and secondary forest. Cultivated farm land was used to serve as control for comparison of soil quality improvement. Soil samples were collected in four replicates on each land cover type and analyzed for major physical and chemical parameters. The results show little fertility improvement for base saturation with 1.42 cmol/kg in Leucaena, 1.99 cmol/kg in secondary forest, 1.60 cmol/kg in guinea grass and in Elephant grass. Leucaena resulted to better soil quality than secondary forest especially in surface properties though not significantly different. Elephant grass and guinea grass also resulted to better Nitrogen content. Nitrogen content recorded in Leucaena was high with 0.20% - 0.25%. Guinea grass and elephant grass resulted to better soil quality in terms of nitrogen content [0.20% - 0.25%] than cultivated and secondary forest [0.07% - 0.11%] due to their yearly incorporation in to the soil by ploughing. The values of phosphorus were higher in Leucaena though not significant [6.46 mg/kg]. Low soil properties improvement is attributed to nutrient exploitation in Leucaena and secondary forest after a long period of fallow [20 years] while, nitrogen enrichment in the grasses is attributed to yearly tillage. Over all low to medium soil variability indicates that the soils could be managed as a unit for crop production.展开更多
Agricultural soils can sequester and release large amounts of carbon. Accessibility of soil carbon to microbial attacks depends on biological, chemical, and physical protection mechanisms such as organic matter compos...Agricultural soils can sequester and release large amounts of carbon. Accessibility of soil carbon to microbial attacks depends on biological, chemical, and physical protection mechanisms such as organic matter composition and particle size, soil aggregation, and chemical protection through the silt-clayorganic matter complex. While soil and organic matter are fractal objects controlling exposure of reactive surfaces to the environment, soil aggregation and biomass production and quality are regulated by agricultural practices. Organic matter decomposition in soil is generally described by the classical first-order kinetics equations fitted to define distinct carbon pools. By comparison, fractal kinetics assigns a coefficient to adjust time-dependent decomposition rate of total soil carbon to protection mechanisms. Our objective was to relate fractal parameters of organic matter decomposition to soil management systems. Retrieving published data, the decomposition of organic matter was modeled in a silt loam soil maintained under pasture, annual cropping or bare fallow during 11 years. The classical first-order kinetics model returned quadratic relationships indicating that reactive carbon decreased with time. Fractal kinetics rectified the relationships successfully. Initial decomposition rate (k 1 at t = 1) was 7 × 10-4 for pasture, 1 × 10-4 for annual cropping, and 0.5 × 10-4 for bare-soil fallow. Fractal coefficients h were 0.71, 0.45, and 0.25 for pasture, annual cropping and fallow, respectively. Due to aggregation, physical protection against microbial attacks was highest under pasture management, leading to higher carbon sequestration despite higher biomass production and “priming” effects. Parameters k 1 and h proved to be useful indicators for soil quality classification integrating the opposite effects of labile carbon decomposition and carbon protection mechanisms that regulate the decomposition rate of organic matter with time as driven by soil management practices.展开更多
In the semiarid Canadian prairies, water is the most limiting and nitrogen (N) the second most limiting factor influencing spring wheat (Triticum aestivum L.) production. The efficiency of water-and nitrogen use needs...In the semiarid Canadian prairies, water is the most limiting and nitrogen (N) the second most limiting factor influencing spring wheat (Triticum aestivum L.) production. The efficiency of water-and nitrogen use needs to be assessed in order to maintain this production system. The effects of cropping frequency and N fertilization on trends in soil water distribution and water use were quantified for an 18-yr (1967-1984) field experiment conducted on a medium textured Orthic Brown Chernozem (Aridic Haploboroll) in southwestern Saskatchewan, Canada. Soil water contents were measured eight times each year and plant samples were taken at five phenological growth stages. The treatments studied were continuous wheat (Cont W), summer fallow - wheat, F-(W) and summer fallow - wheat - wheat, F-W-(W) each receiving recommended rates of N and phosphorus (P) fertilizer, and (F)-W-W and (Cont W) each receiving only P fertilizer, with the examined rotation phase shown in parentheses. Soil water conserved under fallow during the summer months averaged 25 mm in the root zone, and was related to the initial water content of the soil, the amount of precipitation received, its distribution over time, and potential evapotranspiration. Under a wheat crop grown on fallow, soil water contents between spring and the five-leaf stage remained relatively constant at about 250 mm, but those under a stubble crop, with 40 mm lower spring soil water reserves, increased slightly until about the three-leaf stage. During the period of expansive crop growth (from the five-leaf to the soft dough stage) soil water was rapidly lost from all cropped phases at rates of 1.87 mm.day–1 for F-(W) (N+P), 1.23 mm.day–1 for Cont W (N+P) and 1.17 mm.day–1 for Cont W (+P). The initial loss was from the 0 - 0.3 m depth, but during the latter half of the growing season from deeper depths, although rarely from the 0.9 - 1.2 m depth. In very dry years (e.g., 1973, with 87 mm precipitation between spring and fall) summer fallow treatments lost water. In wet years with poor precipitation distribution (e.g., 1970, with 287 mm precipitation between spring and fall but 142 mm of this in one week between the three- and five-leaf stage) even cropped treatments showed evidence of leaching. The above-ground biomass water use efficiency for Cont W was 19.2 and 16.7 kg.ha–1.mm–1, respectively, for crops receiving (N+P) and P fertilizer only. Grain yield water use efficiency (8.91 kg.ha–1.mm–1) was not significantly influenced by cropping frequency nor N fertilizer. The 18 years of detailed measurements of plant and soil parameters under various crop management systems provide an invaluable source of information for developing and testing simulation models.展开更多
文摘The project was carried out to determine the effects of different fallow types on soil derived from sand stone of low nutrient status in south western Nigeria. The different fallow types include Leu-caena, elephant grass, guinea grass and secondary forest. Cultivated farm land was used to serve as control for comparison of soil quality improvement. Soil samples were collected in four replicates on each land cover type and analyzed for major physical and chemical parameters. The results show little fertility improvement for base saturation with 1.42 cmol/kg in Leucaena, 1.99 cmol/kg in secondary forest, 1.60 cmol/kg in guinea grass and in Elephant grass. Leucaena resulted to better soil quality than secondary forest especially in surface properties though not significantly different. Elephant grass and guinea grass also resulted to better Nitrogen content. Nitrogen content recorded in Leucaena was high with 0.20% - 0.25%. Guinea grass and elephant grass resulted to better soil quality in terms of nitrogen content [0.20% - 0.25%] than cultivated and secondary forest [0.07% - 0.11%] due to their yearly incorporation in to the soil by ploughing. The values of phosphorus were higher in Leucaena though not significant [6.46 mg/kg]. Low soil properties improvement is attributed to nutrient exploitation in Leucaena and secondary forest after a long period of fallow [20 years] while, nitrogen enrichment in the grasses is attributed to yearly tillage. Over all low to medium soil variability indicates that the soils could be managed as a unit for crop production.
文摘Agricultural soils can sequester and release large amounts of carbon. Accessibility of soil carbon to microbial attacks depends on biological, chemical, and physical protection mechanisms such as organic matter composition and particle size, soil aggregation, and chemical protection through the silt-clayorganic matter complex. While soil and organic matter are fractal objects controlling exposure of reactive surfaces to the environment, soil aggregation and biomass production and quality are regulated by agricultural practices. Organic matter decomposition in soil is generally described by the classical first-order kinetics equations fitted to define distinct carbon pools. By comparison, fractal kinetics assigns a coefficient to adjust time-dependent decomposition rate of total soil carbon to protection mechanisms. Our objective was to relate fractal parameters of organic matter decomposition to soil management systems. Retrieving published data, the decomposition of organic matter was modeled in a silt loam soil maintained under pasture, annual cropping or bare fallow during 11 years. The classical first-order kinetics model returned quadratic relationships indicating that reactive carbon decreased with time. Fractal kinetics rectified the relationships successfully. Initial decomposition rate (k 1 at t = 1) was 7 × 10-4 for pasture, 1 × 10-4 for annual cropping, and 0.5 × 10-4 for bare-soil fallow. Fractal coefficients h were 0.71, 0.45, and 0.25 for pasture, annual cropping and fallow, respectively. Due to aggregation, physical protection against microbial attacks was highest under pasture management, leading to higher carbon sequestration despite higher biomass production and “priming” effects. Parameters k 1 and h proved to be useful indicators for soil quality classification integrating the opposite effects of labile carbon decomposition and carbon protection mechanisms that regulate the decomposition rate of organic matter with time as driven by soil management practices.
文摘In the semiarid Canadian prairies, water is the most limiting and nitrogen (N) the second most limiting factor influencing spring wheat (Triticum aestivum L.) production. The efficiency of water-and nitrogen use needs to be assessed in order to maintain this production system. The effects of cropping frequency and N fertilization on trends in soil water distribution and water use were quantified for an 18-yr (1967-1984) field experiment conducted on a medium textured Orthic Brown Chernozem (Aridic Haploboroll) in southwestern Saskatchewan, Canada. Soil water contents were measured eight times each year and plant samples were taken at five phenological growth stages. The treatments studied were continuous wheat (Cont W), summer fallow - wheat, F-(W) and summer fallow - wheat - wheat, F-W-(W) each receiving recommended rates of N and phosphorus (P) fertilizer, and (F)-W-W and (Cont W) each receiving only P fertilizer, with the examined rotation phase shown in parentheses. Soil water conserved under fallow during the summer months averaged 25 mm in the root zone, and was related to the initial water content of the soil, the amount of precipitation received, its distribution over time, and potential evapotranspiration. Under a wheat crop grown on fallow, soil water contents between spring and the five-leaf stage remained relatively constant at about 250 mm, but those under a stubble crop, with 40 mm lower spring soil water reserves, increased slightly until about the three-leaf stage. During the period of expansive crop growth (from the five-leaf to the soft dough stage) soil water was rapidly lost from all cropped phases at rates of 1.87 mm.day–1 for F-(W) (N+P), 1.23 mm.day–1 for Cont W (N+P) and 1.17 mm.day–1 for Cont W (+P). The initial loss was from the 0 - 0.3 m depth, but during the latter half of the growing season from deeper depths, although rarely from the 0.9 - 1.2 m depth. In very dry years (e.g., 1973, with 87 mm precipitation between spring and fall) summer fallow treatments lost water. In wet years with poor precipitation distribution (e.g., 1970, with 287 mm precipitation between spring and fall but 142 mm of this in one week between the three- and five-leaf stage) even cropped treatments showed evidence of leaching. The above-ground biomass water use efficiency for Cont W was 19.2 and 16.7 kg.ha–1.mm–1, respectively, for crops receiving (N+P) and P fertilizer only. Grain yield water use efficiency (8.91 kg.ha–1.mm–1) was not significantly influenced by cropping frequency nor N fertilizer. The 18 years of detailed measurements of plant and soil parameters under various crop management systems provide an invaluable source of information for developing and testing simulation models.