Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was o...Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.展开更多
To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine ...To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine VUMAT. For each individual grain in the polycrystalline aggregate, the rate dependent model was adopted to calculate the plastic shear strain increment in combination with the Voce hardening law to describe the hardening response, the lattice reorientation caused by slip and twinning were calculated separately due to their different mechanisms. The elasto-plastic self consistent (EPSC) model was employed to relate the response of individual grain to the response of the polycrystalline aggregate. Rolling processes of AZ31 sheet and as-cast AZ31 alloy were simulated respectively. The predicted texture distributions are in aualitative a^reement with experimental results.展开更多
As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mecha...As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.展开更多
The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbi...The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbic acid maintained the overall quality for 14 days at 0℃ and 7 days at 5℃;no difference, however, was observed regarding browning of cut surface compared to the control sample at both storage temperatures. Calcium chloride maintained the overall quality and cut surface browning for 14 days at both storage temperatures. It was also found that citric acid 1% can be used for minimally processed cabbage. Soaking with citric acid helped retain the color and increased the overall acceptance and organoleptic quality of fresh cut cabbage;it reduced browning of the cut surface and protected against formation of black specks. Citric acid treatment combined with low temperature storage (0℃) prolonged the shelf life of minimally processed cabbage for 22 days, time sufficient for acceptable marketing of the product. The lightness of minimally processed cabbage decreased linearly from 70.94 ± 6 to 63.8 ± 8.5 - 61.3 ± 8 units for the chemical treatments during 22 days of storage at 0℃. Hue angle values during storage time were also significantly influenced by chemical treatments mainly at 0℃.展开更多
In this paper,the effect of different annealing processes on the microstructure,texture,and formability of ferritic stainless steel was studied in detail.The results showed that the grain size in the final sheet was l...In this paper,the effect of different annealing processes on the microstructure,texture,and formability of ferritic stainless steel was studied in detail.The results showed that the grain size in the final sheet was larger and the recrystallization texture was more uniform after the final recrystallization annealing of hot-rolled steel with continuous annealing than that without annealing or with batch annealing.In addition,the final sheet had a higher average r-value and the lowest planar anisotropy.展开更多
The objectives of this study are to research the relationship between pectin and the softening of peach by soaking in citric acid solutions for 24 h at 35 ℃, pressurizing for 30 rain at 500 MPa or heating for 10 min....The objectives of this study are to research the relationship between pectin and the softening of peach by soaking in citric acid solutions for 24 h at 35 ℃, pressurizing for 30 rain at 500 MPa or heating for 10 min. Also, comparing high-pressure-induced jam (HP-jam) and heat-induced jam (H-jam) were evaluated. It was found that firmness of the peach decreased greatly when soaked at pH 2.0 〉 heated 〉 soaked at pH 2.2 or 2.5 〉 pressurized, respectively. About 88% of the peach pectin was water-soluble-pectin and high-methoxyl pectin, while low-methoxyl pectin was slight. During pressurization, the pectin did not change. However, pectin degraded through hydrolysis during heating; consequently, the middle lamella separated. Also, eight kinds of peach jam (65% sugar, pH 2.0 or pH 2.2, and 50% or 60% sugar, pH 2.5) were compared. Both color and flavor of HP-jam were better than H-jam. As the pH values were lower, L-, a-, b-values of jam became higher, and the jam became pinker. Raw peach contained about 0.3%-0.4% pectin, therefore, an addition of 0.6% pectin was needed for both HP- and H-jams. However, there was no great difference in rheology or sensory evaluation between HP- and H-jams.展开更多
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu...Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.展开更多
[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injecti...[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.展开更多
A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigat...A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.展开更多
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w...The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.展开更多
The effects of friction stir processing (FSP) on the microstructure, microtexture and hardness of rolled pure aluminum were investigated. The microstructure and microtexture were characterized using electron backsca...The effects of friction stir processing (FSP) on the microstructure, microtexture and hardness of rolled pure aluminum were investigated. The microstructure and microtexture were characterized using electron backscattered diffraction (EBSD) technique on the transversal section. The stir zone (SZ) contains fine, equiaxed and fully recrystallized grains. The texture component of the base material mainly consists of R, S and brass R textures. Miner copper texture component is also determined. In the center of the stir zone, the dominant texture is (111) parallel to about 70° from ND pointing toward RD. The textures of this location rotating clockwise about 30° and anticlockwise about 60° around the ND result in the textures of the areas, which are 3 mm apart from this location on the retreating side and advancing side, respectively.展开更多
A novel and efficient approach for detecting wood texture orientation by computer was presented. Four Matlab functions were tried to describe the relative position and orientation of wood texture pixels, to detect tex...A novel and efficient approach for detecting wood texture orientation by computer was presented. Four Matlab functions were tried to describe the relative position and orientation of wood texture pixels, to detect texture shape and to create skeletal lines image of wood texture, and BWMORPH function was found the best one. Then by Radon transform, it generated a signature composed of 180 values, each value summing up the size of texture lines that are shaped along that angle, and a two dimensional curve plot was drawn to represent the texture orientation of wood. Furthermore, it analyzed texture orientations of forty species as well as their general statistic laws, classified by softwood, hardwood, radial section and tangential section, and the results showed that texture orientation laws described by Radon trans- form plot and their extracting datum were in accord with the impression of wood texture that people possessed in daily life, which con- firmed the validity of this new approach and their appealing utilization potentials.展开更多
Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, sa...Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, samples of bionic non-smooth surfaces of stainless steel 0Crl 8Ni9 were manufactured in the form of reseau structure by laser multiple processing. The mechanical properties (including microhardness, residual stress, surface roughness) and microstructure of the samples treated by laser multiple processing were compared with those of the samples without LSP The results show that the mechanical properties of these samples by laser multiple processing were clearly improved in comparison with those of the samples without LSP The mechanisms underlying the improved surface microhardness and surface residual stress were analyzed, and the relations between hardness, comnressive residual stress and roughness were also presented.展开更多
Flash processing(FP)has attracted considerable attention due to its high efficiency,economic advantages,and the extraordinary opportunity if offers to improve the mechanical properties of steel.In this study,we invest...Flash processing(FP)has attracted considerable attention due to its high efficiency,economic advantages,and the extraordinary opportunity if offers to improve the mechanical properties of steel.In this study,we investigated the influences of FP on the recrystallization(REX)behavior and mechanical performance of cold-rolled IF steel.Using a thermomechanical simulator,we performed both single-stage FPs,at heating rates of 200℃/s and 500℃/s,and two-stage FP,with an initial preheating to 400℃ at a rate of 5℃/s and then to peak temperatures at a rate of 200℃/s.In comparison to continuous annealing(CA),single-stage FP can effectively refine the recrystallized grain sizes and produce a similar or even sharperγ(ND(normal direction)//{111})texture component.In particular,the heating rate of 500℃/s led to an increase in the yield strength of about 23.2%and a similar ductility.In contrast,the two-stage FP resulted in a higher REX temperature as well as a certain grain refinement due to the stored strain energy,i.e.,the driving force of REX,which was largely consumed during preheating.Furthermore,both stronger{110}<110>and weakerγtexture components appeared in the two-stage FP and were believed to be responsible for the early necking and deterioration in ductility.展开更多
In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement ...In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement from a starting size of 16.4±6.8µm to 3.2±1.2µm was attained after FSP.Remarkably,bimodal grain size distribution was observed in the nugget zone with a combination of coarse(11.62±8.4µm)and fine grains(3.2±1.2µm).Due to the grain refinement,a slight improvement in the hardness was found in the nugget zone of FSPed AZ31.The bimodal grain size distribution in the stir zone showed pronounced influence on the corrosion rate of FSPed AZ31 as observed from the immersion and electrochemical tests.From the X-ray diffraction analysis,more amount of Mg(OH)_(2) was observed on FSPed AZ31 compared with the unprocessed AZ31.Polarization measurements demonstrated the higher corrosion current density for FSPed AZ31(8.92×10^(−5)A/cm^(2))compared with the unprocessed condition(2.90×10^(−5)A/cm^(2))that can be attributed to the texture effect and large variations in the grain size which led to non-uniform galvanic intensities.展开更多
基金Project(2013AA032403) supported by the National High-Tech Research and Development Program of ChinaProject(YETP0409) supported by the Beijing Higher Education Young Elite Teacher Project in 2013,ChinaProject(51301016) supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.
基金Projects(50821003,50405014)supported by the National Natural Science Foundation of ChinaProjects(10QH1401400,10520705000,10JC1407300)supported by Shanghai Committee of Science and Technology,China+1 种基金Project(NCET-07-0545)supported by Program for New Century Excellent Talents in University,ChinaFord University Research Program,China
文摘To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine VUMAT. For each individual grain in the polycrystalline aggregate, the rate dependent model was adopted to calculate the plastic shear strain increment in combination with the Voce hardening law to describe the hardening response, the lattice reorientation caused by slip and twinning were calculated separately due to their different mechanisms. The elasto-plastic self consistent (EPSC) model was employed to relate the response of individual grain to the response of the polycrystalline aggregate. Rolling processes of AZ31 sheet and as-cast AZ31 alloy were simulated respectively. The predicted texture distributions are in aualitative a^reement with experimental results.
基金Project(XLYC1807021)supported by Liaoning Revitalization Talents Program,ChinaProject(2019JH3/30100014)supported by Joint Research Fund of Lianning-Shenyang National Laboratory for Materials Science,China+2 种基金Project supported by Liaoning Bai Qian Wan Talents Program,ChinaProject(RC200414)supported by Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang City,ChinaProject(XLYC1908006)supported by High Level Innovation Team of Liaoning Province,China。
文摘As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.
文摘The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbic acid maintained the overall quality for 14 days at 0℃ and 7 days at 5℃;no difference, however, was observed regarding browning of cut surface compared to the control sample at both storage temperatures. Calcium chloride maintained the overall quality and cut surface browning for 14 days at both storage temperatures. It was also found that citric acid 1% can be used for minimally processed cabbage. Soaking with citric acid helped retain the color and increased the overall acceptance and organoleptic quality of fresh cut cabbage;it reduced browning of the cut surface and protected against formation of black specks. Citric acid treatment combined with low temperature storage (0℃) prolonged the shelf life of minimally processed cabbage for 22 days, time sufficient for acceptable marketing of the product. The lightness of minimally processed cabbage decreased linearly from 70.94 ± 6 to 63.8 ± 8.5 - 61.3 ± 8 units for the chemical treatments during 22 days of storage at 0℃. Hue angle values during storage time were also significantly influenced by chemical treatments mainly at 0℃.
基金funded by Shanghai Youth Science and Technology Development Star Project ( No. 15QB1400200)
文摘In this paper,the effect of different annealing processes on the microstructure,texture,and formability of ferritic stainless steel was studied in detail.The results showed that the grain size in the final sheet was larger and the recrystallization texture was more uniform after the final recrystallization annealing of hot-rolled steel with continuous annealing than that without annealing or with batch annealing.In addition,the final sheet had a higher average r-value and the lowest planar anisotropy.
文摘The objectives of this study are to research the relationship between pectin and the softening of peach by soaking in citric acid solutions for 24 h at 35 ℃, pressurizing for 30 rain at 500 MPa or heating for 10 min. Also, comparing high-pressure-induced jam (HP-jam) and heat-induced jam (H-jam) were evaluated. It was found that firmness of the peach decreased greatly when soaked at pH 2.0 〉 heated 〉 soaked at pH 2.2 or 2.5 〉 pressurized, respectively. About 88% of the peach pectin was water-soluble-pectin and high-methoxyl pectin, while low-methoxyl pectin was slight. During pressurization, the pectin did not change. However, pectin degraded through hydrolysis during heating; consequently, the middle lamella separated. Also, eight kinds of peach jam (65% sugar, pH 2.0 or pH 2.2, and 50% or 60% sugar, pH 2.5) were compared. Both color and flavor of HP-jam were better than H-jam. As the pH values were lower, L-, a-, b-values of jam became higher, and the jam became pinker. Raw peach contained about 0.3%-0.4% pectin, therefore, an addition of 0.6% pectin was needed for both HP- and H-jams. However, there was no great difference in rheology or sensory evaluation between HP- and H-jams.
文摘Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.
文摘[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.
基金Project(51205419)supported by the National Natural Science Foundation of China
文摘A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.
基金supported by the general project of the National Natural Science Foundation of China(No.52071042)Chongqing Natural Science Foundation Project,China(Nos.CSTB2023NSCQ-MSX0079,cstc2021ycjh-bgzxm0148)Graduate Student Innovation Program of Chongqing University of Technology,China(No.gzlcx20232008).
文摘The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.
文摘The effects of friction stir processing (FSP) on the microstructure, microtexture and hardness of rolled pure aluminum were investigated. The microstructure and microtexture were characterized using electron backscattered diffraction (EBSD) technique on the transversal section. The stir zone (SZ) contains fine, equiaxed and fully recrystallized grains. The texture component of the base material mainly consists of R, S and brass R textures. Miner copper texture component is also determined. In the center of the stir zone, the dominant texture is (111) parallel to about 70° from ND pointing toward RD. The textures of this location rotating clockwise about 30° and anticlockwise about 60° around the ND result in the textures of the areas, which are 3 mm apart from this location on the retreating side and advancing side, respectively.
文摘A novel and efficient approach for detecting wood texture orientation by computer was presented. Four Matlab functions were tried to describe the relative position and orientation of wood texture pixels, to detect texture shape and to create skeletal lines image of wood texture, and BWMORPH function was found the best one. Then by Radon transform, it generated a signature composed of 180 values, each value summing up the size of texture lines that are shaped along that angle, and a two dimensional curve plot was drawn to represent the texture orientation of wood. Furthermore, it analyzed texture orientations of forty species as well as their general statistic laws, classified by softwood, hardwood, radial section and tangential section, and the results showed that texture orientation laws described by Radon trans- form plot and their extracting datum were in accord with the impression of wood texture that people possessed in daily life, which con- firmed the validity of this new approach and their appealing utilization potentials.
基金supported by the National Natural Science Foundation of China (Grant No.50705038,50735001 and 10804037)the Foundation of Jiangsu Province (Grant No.06-D-023,BK2007512 and BG2007033)+2 种基金The 8th Student Research Train Program of Jiangsu University (Grant No.08A172)the Innovation Program of Graduated Student of Jiangsu Province (Grant No.XM2006-45)the Open Foundation of Jiangsu Key Laboratory of Advanced Numerical Control Technology (Grant No.KXJ07126)
文摘Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, samples of bionic non-smooth surfaces of stainless steel 0Crl 8Ni9 were manufactured in the form of reseau structure by laser multiple processing. The mechanical properties (including microhardness, residual stress, surface roughness) and microstructure of the samples treated by laser multiple processing were compared with those of the samples without LSP The results show that the mechanical properties of these samples by laser multiple processing were clearly improved in comparison with those of the samples without LSP The mechanisms underlying the improved surface microhardness and surface residual stress were analyzed, and the relations between hardness, comnressive residual stress and roughness were also presented.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51861135302 and 51831002)Fundamental Research Funds for the Central Universities,China(No.FRF-TP-18-002C2).
文摘Flash processing(FP)has attracted considerable attention due to its high efficiency,economic advantages,and the extraordinary opportunity if offers to improve the mechanical properties of steel.In this study,we investigated the influences of FP on the recrystallization(REX)behavior and mechanical performance of cold-rolled IF steel.Using a thermomechanical simulator,we performed both single-stage FPs,at heating rates of 200℃/s and 500℃/s,and two-stage FP,with an initial preheating to 400℃ at a rate of 5℃/s and then to peak temperatures at a rate of 200℃/s.In comparison to continuous annealing(CA),single-stage FP can effectively refine the recrystallized grain sizes and produce a similar or even sharperγ(ND(normal direction)//{111})texture component.In particular,the heating rate of 500℃/s led to an increase in the yield strength of about 23.2%and a similar ductility.In contrast,the two-stage FP resulted in a higher REX temperature as well as a certain grain refinement due to the stored strain energy,i.e.,the driving force of REX,which was largely consumed during preheating.Furthermore,both stronger{110}<110>and weakerγtexture components appeared in the two-stage FP and were believed to be responsible for the early necking and deterioration in ductility.
文摘In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement from a starting size of 16.4±6.8µm to 3.2±1.2µm was attained after FSP.Remarkably,bimodal grain size distribution was observed in the nugget zone with a combination of coarse(11.62±8.4µm)and fine grains(3.2±1.2µm).Due to the grain refinement,a slight improvement in the hardness was found in the nugget zone of FSPed AZ31.The bimodal grain size distribution in the stir zone showed pronounced influence on the corrosion rate of FSPed AZ31 as observed from the immersion and electrochemical tests.From the X-ray diffraction analysis,more amount of Mg(OH)_(2) was observed on FSPed AZ31 compared with the unprocessed AZ31.Polarization measurements demonstrated the higher corrosion current density for FSPed AZ31(8.92×10^(−5)A/cm^(2))compared with the unprocessed condition(2.90×10^(−5)A/cm^(2))that can be attributed to the texture effect and large variations in the grain size which led to non-uniform galvanic intensities.