Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistanc...Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.展开更多
The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blade...The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.展开更多
This paper focuses on aeroelastic prediction and analysis for a transonic fan rotor with only its“hot”(running)blade shape available,which is often the case in practical engineering such as in the design stage.Based...This paper focuses on aeroelastic prediction and analysis for a transonic fan rotor with only its“hot”(running)blade shape available,which is often the case in practical engineering such as in the design stage.Based on an in-house and well-validated CFD solver and a hybrid structural finite element modeling/modal approach,three main aspects are considered with special emphasis on dealing with the“hot”blade shape.First,static aeroelastic analysis is presented for shape transformation between“cold”(manufacturing)and“hot”blades,and influence of the dynamic variation of“hot”shape on evaluated aerodynamic performance is investigated.Second,implementation of the energy method for flutter prediction is given and both a regularly used fixed“hot”shape and a variable“hot”shape are considered.Through comparison,influence of the dynamic variation of“hot”shape on evaluated aeroelastic stability is also investigated.Third,another common way to predict flutter,time-domain method,is used for the same concerned case,from which the predicted flutter characteristics are compared with those from the energy method.A well-publicized axial-flow transonic fan rotor,Rotor 67,is selected as a typical example,and the corresponding numerical results and discussions are presented in detail.展开更多
Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe...Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.展开更多
The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor duc...The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.展开更多
Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at th...Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate.展开更多
In this work, the cycloidal rotor fan (CRF) performance was estimated by means of a numerical method based on Unsteady Reynolds Averaged Navier-Stokes equations (URANS). The fan with a cycloidal rotor belongs to the p...In this work, the cycloidal rotor fan (CRF) performance was estimated by means of a numerical method based on Unsteady Reynolds Averaged Navier-Stokes equations (URANS). The fan with a cycloidal rotor belongs to the positive displacement machines of the rotary type. The numerical algorithm for simulation of the flow in the cycloidal rotor as well as postprocessing of the CFD results was prepared using Ansys CFX CEL. The methodology for the assessment of the CRF performance was proposed and verified. It was found out that the CRF performance strongly depends on the shape of the profile of the applied rotor blade. The NACA 0012 and CLARK Y profiles were tested for the same CRF structure and flow conditions. Also, the crucial importance for the CRF performance has the range of the blade pitch angle change.展开更多
Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-r...Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-rotor axial fans. Like axial fan, many factors have influence on the performance of the asymmetric dual-rotor small axial flow fan, such as the wheel hub ratio, blade shape, blade number, stagger angle and the tip clearance. Because wheel hub ratio has great impact on the performance of the fan, we choose the size of wheel hub ratio as a variable factor to study the model change. There is a different wheel hub ratio between front stage impeller and rear stage of asymmetric dual-rotor small axial fan, so it is very beneficial to select the greater wind area that the fan area of external diameter minuses the area occupied by the blades and the hub as front stage impeller. In this paper, the hub-ratio of front stage impeller is 0.72, and that of rear stage is 0.72, 0.67 and 0.62 respectively along with the front stage impeller. Three kinds of models with different hub ratio of rear stage are simulated using the CFD software and the static characteristics are obtained. Based on the experimental test results, the internal flow field of the asymmetric dual-rotor small axial fan is analyzed in detail, the impact trends of different hub-ratio on the performance of asymmetric dual-rotor small axial fan are obtained and the argument of structure optimization for dual-rotor small axial fan is provided.展开更多
High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rot...High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter.展开更多
文摘Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.
文摘The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.
基金This study was supported by National Natural Science Foundation of China(No.11872212),China Postdoctoral Science Foundation Grant(No.2019M650112),Natural Science Foundation of Jiangsu Province,China(No.BK20190386)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘This paper focuses on aeroelastic prediction and analysis for a transonic fan rotor with only its“hot”(running)blade shape available,which is often the case in practical engineering such as in the design stage.Based on an in-house and well-validated CFD solver and a hybrid structural finite element modeling/modal approach,three main aspects are considered with special emphasis on dealing with the“hot”blade shape.First,static aeroelastic analysis is presented for shape transformation between“cold”(manufacturing)and“hot”blades,and influence of the dynamic variation of“hot”shape on evaluated aerodynamic performance is investigated.Second,implementation of the energy method for flutter prediction is given and both a regularly used fixed“hot”shape and a variable“hot”shape are considered.Through comparison,influence of the dynamic variation of“hot”shape on evaluated aeroelastic stability is also investigated.Third,another common way to predict flutter,time-domain method,is used for the same concerned case,from which the predicted flutter characteristics are compared with those from the energy method.A well-publicized axial-flow transonic fan rotor,Rotor 67,is selected as a typical example,and the corresponding numerical results and discussions are presented in detail.
文摘Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.
基金supported by the National Natural Science Foundation of China(Nos.6130422361374116+1 种基金61503185)Specialized Research Fund for the Doctoral Program of Higher Education(20123218120015)
文摘The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.
文摘Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate.
文摘In this work, the cycloidal rotor fan (CRF) performance was estimated by means of a numerical method based on Unsteady Reynolds Averaged Navier-Stokes equations (URANS). The fan with a cycloidal rotor belongs to the positive displacement machines of the rotary type. The numerical algorithm for simulation of the flow in the cycloidal rotor as well as postprocessing of the CFD results was prepared using Ansys CFX CEL. The methodology for the assessment of the CRF performance was proposed and verified. It was found out that the CRF performance strongly depends on the shape of the profile of the applied rotor blade. The NACA 0012 and CLARK Y profiles were tested for the same CRF structure and flow conditions. Also, the crucial importance for the CRF performance has the range of the blade pitch angle change.
文摘Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-rotor axial fans. Like axial fan, many factors have influence on the performance of the asymmetric dual-rotor small axial flow fan, such as the wheel hub ratio, blade shape, blade number, stagger angle and the tip clearance. Because wheel hub ratio has great impact on the performance of the fan, we choose the size of wheel hub ratio as a variable factor to study the model change. There is a different wheel hub ratio between front stage impeller and rear stage of asymmetric dual-rotor small axial fan, so it is very beneficial to select the greater wind area that the fan area of external diameter minuses the area occupied by the blades and the hub as front stage impeller. In this paper, the hub-ratio of front stage impeller is 0.72, and that of rear stage is 0.72, 0.67 and 0.62 respectively along with the front stage impeller. Three kinds of models with different hub ratio of rear stage are simulated using the CFD software and the static characteristics are obtained. Based on the experimental test results, the internal flow field of the asymmetric dual-rotor small axial fan is analyzed in detail, the impact trends of different hub-ratio on the performance of asymmetric dual-rotor small axial fan are obtained and the argument of structure optimization for dual-rotor small axial fan is provided.
文摘High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter.