An improved high fan-in domino circuit is proposed. The nMOS pull-down network of the circuit is divided into several blocks to reduce the capacitance of the dynamic node and each block only needs a small keeper trans...An improved high fan-in domino circuit is proposed. The nMOS pull-down network of the circuit is divided into several blocks to reduce the capacitance of the dynamic node and each block only needs a small keeper transistor to maintain the noise margin. Because we omit the footer transistor, the circuit has better performance than the standard domino circuit. A 64-input OR-gate implemented with the structure is simulated using HSPICE under typical conditions of 0.13μm CMOS technology. The average delay of the circuit is 63.9ps, the average power dissipation is 32.4μW, and the area is l15μm^2. Compared to compound domino logic, the proposed circuit can reduce delay and power dissipation by 55% and 38%, respectively.展开更多
Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel...Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel Metal Oxide Semiconductor(PMOS)has been replaced by Negative Channel Metal Oxide Semiconductor(NMOS)in recent years,with low dimen-sion-switching changes in order to shape the mirror of voltage comparator.NMOS is used to reduce stacking leakage as well as total exchange.Domino Logic Cir-cuit is a powerful and versatile digital programmer that gained popularity in recent years.In this study regarding Adaptive Sub Threshold Voltage Level Control Pro-blem,the researchers intend to solve the contention issues,reduce power dissipa-tion,and increase the noise immunity by proposing Adaptive Sub Threshold Voltage Level Control(ASVLC)-based domino circuit.The efficiency and effec-tiveness of the domino circuit are demonstrated through simulation results.The suggested system makes use of high-speed broad fan-gate circuits,occupies mini-mum space,and consumes meagre amount of power.The proposed circuit was validated in Cadence simulation tool at a supply voltage of 1V,frequency of 100 MHz,and an operating temperature of 27°C with 64 input OR gates.As per the simulation results,the suggested Domino Gate reduced the power dissipa-tion by 17.58 percent and improved the noise immunity by 1.21 times in compar-ison with standard domino logic circuits.展开更多
基金the National High-Tech Research and Development Program of China(No.2005AA110020)~~
文摘An improved high fan-in domino circuit is proposed. The nMOS pull-down network of the circuit is divided into several blocks to reduce the capacitance of the dynamic node and each block only needs a small keeper transistor to maintain the noise margin. Because we omit the footer transistor, the circuit has better performance than the standard domino circuit. A 64-input OR-gate implemented with the structure is simulated using HSPICE under typical conditions of 0.13μm CMOS technology. The average delay of the circuit is 63.9ps, the average power dissipation is 32.4μW, and the area is l15μm^2. Compared to compound domino logic, the proposed circuit can reduce delay and power dissipation by 55% and 38%, respectively.
文摘Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel Metal Oxide Semiconductor(PMOS)has been replaced by Negative Channel Metal Oxide Semiconductor(NMOS)in recent years,with low dimen-sion-switching changes in order to shape the mirror of voltage comparator.NMOS is used to reduce stacking leakage as well as total exchange.Domino Logic Cir-cuit is a powerful and versatile digital programmer that gained popularity in recent years.In this study regarding Adaptive Sub Threshold Voltage Level Control Pro-blem,the researchers intend to solve the contention issues,reduce power dissipa-tion,and increase the noise immunity by proposing Adaptive Sub Threshold Voltage Level Control(ASVLC)-based domino circuit.The efficiency and effec-tiveness of the domino circuit are demonstrated through simulation results.The suggested system makes use of high-speed broad fan-gate circuits,occupies mini-mum space,and consumes meagre amount of power.The proposed circuit was validated in Cadence simulation tool at a supply voltage of 1V,frequency of 100 MHz,and an operating temperature of 27°C with 64 input OR gates.As per the simulation results,the suggested Domino Gate reduced the power dissipa-tion by 17.58 percent and improved the noise immunity by 1.21 times in compar-ison with standard domino logic circuits.