Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radi...Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radiance were studied. The results show that the far infrared radiance of rare earth mineral composite materials is 0.93 when the rare earth additive content is 6% and heat treatment temperature is 750℃.展开更多
The rare earth, far-infrared natural mineral and clay were compounded to prepare the far-infrared composite materials. The effects of the far-infrared composite materials on the physicochemical properties of diesel fu...The rare earth, far-infrared natural mineral and clay were compounded to prepare the far-infrared composite materials. The effects of the far-infrared composite materials on the physicochemical properties of diesel fuel were studied. It shows that the composite materials can radiate higher intensity of far infrared; and the surface tension, viscosity and flash point decrease when the diesel fuel is dealt with the composite materials containing rare earth elements; and then the available effect mechanisms of the composite materials on the properties of diesel fuel were investigated by testing the activity changes of arene.展开更多
The rare earth composite materials (RECMS) for far infrared radiation were prepared using rare earth elements and natural mineral materials radiating far infrared. The effects of the granularity and rare earth additio...The rare earth composite materials (RECMS) for far infrared radiation were prepared using rare earth elements and natural mineral materials radiating far infrared. The effects of the granularity and rare earth additions on the far infrared radiation were investigated. The results show that the as-prepared composite materials with higher infrared radiance can enhance the combustion of gasoline, when the composite are about 4.24 μm in average granularity and comprise about 6% (mass fraction) of rare earth. Through bench test, the oil-saving rate of the engine dealt with the composite is 2.8%~3.7%, and the reducing rate of CO and HC in the exhaust gas is 20%~25% and 28%~30%, respectively.展开更多
Emergence of zoonotic-human pathogens is proven to be a lethal threat to public health, and RNA virus including influenza viruses, severe acute respiratory syndrome coronavirus, middle east respiratory syndrome corona...Emergence of zoonotic-human pathogens is proven to be a lethal threat to public health, and RNA virus including influenza viruses, severe acute respiratory syndrome coronavirus, middle east respiratory syndrome coronavirus, and COVID-19, plays a pivotal role. As those viruses as airborne microorganisms spread mainly by tiny airborne particles, it is important to de-active those airborne particles before their entry into human bodies. In this study, we investigated the effect of far infrared (FIR) radiation on inhibition of airborne microorganisms. The result confirmed that double stand DNA from airborne microorganisms containing RNA viruses was stable under mild FIR radiation. However, single strand RNA from them was found to be sensitive to FIR radiation, indicating that RNA virus in airborne particles is instable under FIR radiation. Based on this observation, two models on usage of FIR radiation to prevent RNA virus transmission by air and cure RNA virus infection were proposed. Then, this study suggests that FIR radiation has the potential to be a cheap, convenient, and efficient method in clinic to treat RNA virus.展开更多
Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband t...Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband to stimulate tissues and cells and is considered an effective therapeutic modality for specific medical disorders.The IR application as a medical therapy has advanced rapidly in recent years.For example,IR therapy like IR-emitting apparel and materials that can be run solely by body heat(does not need an external power supply)have been developed.New methods for providing FIR radiation to the human body have emerged due to technological advancements.Specialty saunas and lamps that emit pure FIR radiation have become effective,safe,and widely used therapeutic sources.Fibers infused with thermide,FIR emitting ceramic nanomaterials and knitted into fabrics are used as clothes and apparel to produce FIR radiation and benefit from its effects.A deeper understanding of FIR's significant innovations and biological implications could aid in improving therapeutic efficacy or developing new methods that use FIR wavelengths.展开更多
A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far inf...A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far infrared radiation properties on the surface tension of water were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and a tensiometer, respectively. It was showed that, after being sintered at 1160 ℃, the solid solution was formed by CeO2 and Fe2O3, thus the crystal parameters (c/a axis ratio) and interplanar spacing of Fe2O3 increased. The addition of cerium was regarded to improve the far infrared radiation of ceramics, and the maximum emissivity value in the range of 5-20 μm was 0.94. The surface tension of water gradually decreased with increasing radiation time.展开更多
The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-...The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1 .5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.展开更多
The resin composite materials (RCM) were prepared by the method of doping resin with tourmaline powders modified with lanthanum element. It was characterized by scanning electron microscope (SEM), IR radiation determi...The resin composite materials (RCM) were prepared by the method of doping resin with tourmaline powders modified with lanthanum element. It was characterized by scanning electron microscope (SEM), IR radiation determination, X-ray diffraction (XRD), and fourier transform infrared spectroscope (FTIR). The results showed that the RCM could radiate higher intensity of far infrared. The molecular movement was strengthened and the inter-molecular contacts were easily reduced when the diesel oil was dealt with the RCM. The effects of the RCM on the oil consumption and air pollutant emissions of oil-burning boiler were investigated. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the RCM was 2.76%, and the reducing rates of CO and NO in the exhaust gas were 32.9% and 15.8%, respectively.展开更多
Rare earth and far-infrared mineral composite materials were added to ceramic glazes to prepare easy-cleaning ceramic . The morphology of easy-cleaning ceramic was observed by SEM. The influence of easy-cleaning ceram...Rare earth and far-infrared mineral composite materials were added to ceramic glazes to prepare easy-cleaning ceramic . The morphology of easy-cleaning ceramic was observed by SEM. The influence of easy-cleaning ceramic on water surface tension and contact angles of water were investigated. Through calculation of ceramic surface free energy and observation of oil drop on ceramic surface in water, the easy-cleaning mechanism of rare earth composite ceramic was studied . It is found that the rare earth composite ceramic can make water surface tension decrease. The surface free energy and the polar component of rare earth composite ceramic are increased. The rare earth composite ceramics have the easy-cleaning property.展开更多
Polarized far infrared (FIR) reflectance technique was applied to study the optical properties of a bulk wurtzite zinc oxide (ZnO) single crystal. Room temperature polarized FIR reflectance spectra were taken at v...Polarized far infrared (FIR) reflectance technique was applied to study the optical properties of a bulk wurtzite zinc oxide (ZnO) single crystal. Room temperature polarized FIR reflectance spectra were taken at various angles of incidence, from 20°to 70°. The theoretical polarized FIR reflectance spectra were simulated based on the anisotropic dielectric function model. Good agreement was achieved between the experimental and the theoretical FIR reflectance spectra. Through this work, a complete set of reststrahlen parameters of a bulk wurtzite ZnO at the Brillouin zone centre was obtained. Additionally, other FIR optical properties such as the real and the imaginary parts of the complex dielectric function, real and imaginary parts of the refractive index, the absorption coefficient and the reciprocal of the absorption coefficient were also obtained by using numerical calculation.展开更多
A high repetition rate,picosecond terahertz(THz)parametric amplifier with a LiNbO3(LN)crystai has been demonstrated in this work.At a 10 kHz repetition rate,a peak power of 200 W and an average power of 12 pW have bee...A high repetition rate,picosecond terahertz(THz)parametric amplifier with a LiNbO3(LN)crystai has been demonstrated in this work.At a 10 kHz repetition rate,a peak power of 200 W and an average power of 12 pW have been obtained over a wide range of around 2 THz;at a 100 kHz repetition rate,a maximum peak power of 18 W and an average power of 10.8 pW have been obtained.The parametric gain of the LN crystal was also investigated,and a modified Schwarz-Maier model was introduced to interpret the experimental results.展开更多
We demonstrate terahertz(THz) frequency laser emission around 3.2 THz from localized modes in one-dimensional disordered grating systems. The disordered structures are patterned on top of the double-metal waveguide of...We demonstrate terahertz(THz) frequency laser emission around 3.2 THz from localized modes in one-dimensional disordered grating systems. The disordered structures are patterned on top of the double-metal waveguide of a THz quantum cascade laser. Multiple emission peaks are observed within a frequency range corresponding to the bandgap of a periodic counterpart with no disorder, indicating the presence of mode localization aided by Bragg scattering. Simulations and experimental measurements provide strong evidence for the spatial localization of the THz laser modes.展开更多
Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pa...Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.展开更多
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radiance were studied. The results show that the far infrared radiance of rare earth mineral composite materials is 0.93 when the rare earth additive content is 6% and heat treatment temperature is 750℃.
文摘The rare earth, far-infrared natural mineral and clay were compounded to prepare the far-infrared composite materials. The effects of the far-infrared composite materials on the physicochemical properties of diesel fuel were studied. It shows that the composite materials can radiate higher intensity of far infrared; and the surface tension, viscosity and flash point decrease when the diesel fuel is dealt with the composite materials containing rare earth elements; and then the available effect mechanisms of the composite materials on the properties of diesel fuel were investigated by testing the activity changes of arene.
文摘The rare earth composite materials (RECMS) for far infrared radiation were prepared using rare earth elements and natural mineral materials radiating far infrared. The effects of the granularity and rare earth additions on the far infrared radiation were investigated. The results show that the as-prepared composite materials with higher infrared radiance can enhance the combustion of gasoline, when the composite are about 4.24 μm in average granularity and comprise about 6% (mass fraction) of rare earth. Through bench test, the oil-saving rate of the engine dealt with the composite is 2.8%~3.7%, and the reducing rate of CO and HC in the exhaust gas is 20%~25% and 28%~30%, respectively.
文摘Emergence of zoonotic-human pathogens is proven to be a lethal threat to public health, and RNA virus including influenza viruses, severe acute respiratory syndrome coronavirus, middle east respiratory syndrome coronavirus, and COVID-19, plays a pivotal role. As those viruses as airborne microorganisms spread mainly by tiny airborne particles, it is important to de-active those airborne particles before their entry into human bodies. In this study, we investigated the effect of far infrared (FIR) radiation on inhibition of airborne microorganisms. The result confirmed that double stand DNA from airborne microorganisms containing RNA viruses was stable under mild FIR radiation. However, single strand RNA from them was found to be sensitive to FIR radiation, indicating that RNA virus in airborne particles is instable under FIR radiation. Based on this observation, two models on usage of FIR radiation to prevent RNA virus transmission by air and cure RNA virus infection were proposed. Then, this study suggests that FIR radiation has the potential to be a cheap, convenient, and efficient method in clinic to treat RNA virus.
文摘Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband to stimulate tissues and cells and is considered an effective therapeutic modality for specific medical disorders.The IR application as a medical therapy has advanced rapidly in recent years.For example,IR therapy like IR-emitting apparel and materials that can be run solely by body heat(does not need an external power supply)have been developed.New methods for providing FIR radiation to the human body have emerged due to technological advancements.Specialty saunas and lamps that emit pure FIR radiation have become effective,safe,and widely used therapeutic sources.Fibers infused with thermide,FIR emitting ceramic nanomaterials and knitted into fabrics are used as clothes and apparel to produce FIR radiation and benefit from its effects.A deeper understanding of FIR's significant innovations and biological implications could aid in improving therapeutic efficacy or developing new methods that use FIR wavelengths.
基金Project supported by the National Key Technology R&D Program(2011BAE30B04)University Innovation Team Leader Training Program in Hebei Province(LJRC020)
文摘A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far infrared radiation properties on the surface tension of water were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and a tensiometer, respectively. It was showed that, after being sintered at 1160 ℃, the solid solution was formed by CeO2 and Fe2O3, thus the crystal parameters (c/a axis ratio) and interplanar spacing of Fe2O3 increased. The addition of cerium was regarded to improve the far infrared radiation of ceramics, and the maximum emissivity value in the range of 5-20 μm was 0.94. The surface tension of water gradually decreased with increasing radiation time.
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1 .5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.
基金the Key Technologies R &D Programme of Tianjin (06YFGZGX02400)
文摘The resin composite materials (RCM) were prepared by the method of doping resin with tourmaline powders modified with lanthanum element. It was characterized by scanning electron microscope (SEM), IR radiation determination, X-ray diffraction (XRD), and fourier transform infrared spectroscope (FTIR). The results showed that the RCM could radiate higher intensity of far infrared. The molecular movement was strengthened and the inter-molecular contacts were easily reduced when the diesel oil was dealt with the RCM. The effects of the RCM on the oil consumption and air pollutant emissions of oil-burning boiler were investigated. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the RCM was 2.76%, and the reducing rates of CO and NO in the exhaust gas were 32.9% and 15.8%, respectively.
文摘Rare earth and far-infrared mineral composite materials were added to ceramic glazes to prepare easy-cleaning ceramic . The morphology of easy-cleaning ceramic was observed by SEM. The influence of easy-cleaning ceramic on water surface tension and contact angles of water were investigated. Through calculation of ceramic surface free energy and observation of oil drop on ceramic surface in water, the easy-cleaning mechanism of rare earth composite ceramic was studied . It is found that the rare earth composite ceramic can make water surface tension decrease. The surface free energy and the polar component of rare earth composite ceramic are increased. The rare earth composite ceramics have the easy-cleaning property.
基金supported by the Ministry of Higher Education Malaysia Fundamental Research Grant Scheme(FRGS, Grant No. 203/PFIZIK/6711127)
文摘Polarized far infrared (FIR) reflectance technique was applied to study the optical properties of a bulk wurtzite zinc oxide (ZnO) single crystal. Room temperature polarized FIR reflectance spectra were taken at various angles of incidence, from 20°to 70°. The theoretical polarized FIR reflectance spectra were simulated based on the anisotropic dielectric function model. Good agreement was achieved between the experimental and the theoretical FIR reflectance spectra. Through this work, a complete set of reststrahlen parameters of a bulk wurtzite ZnO at the Brillouin zone centre was obtained. Additionally, other FIR optical properties such as the real and the imaginary parts of the complex dielectric function, real and imaginary parts of the refractive index, the absorption coefficient and the reciprocal of the absorption coefficient were also obtained by using numerical calculation.
基金the National Key Research and Development Program of China(No.2017YFA0701000)the National Natural Science Foundation of China(No.11735002).
文摘A high repetition rate,picosecond terahertz(THz)parametric amplifier with a LiNbO3(LN)crystai has been demonstrated in this work.At a 10 kHz repetition rate,a peak power of 200 W and an average power of 12 pW have been obtained over a wide range of around 2 THz;at a 100 kHz repetition rate,a maximum peak power of 18 W and an average power of 10.8 pW have been obtained.The parametric gain of the LN crystal was also investigated,and a modified Schwarz-Maier model was introduced to interpret the experimental results.
基金Ministry of Education-Singapore(MOE)(MOE 2016-T2-1-128)Agency for Science,Technology and Research(A*STAR)(1426500050)+2 种基金National Research Foundation Singapore(NRF)(NRF-CRP18-2017-02)Engineering and Physical Sciences Research Council(EPSRC)(EP/P021859/1)Royal Society and Wolfson Foundation
文摘We demonstrate terahertz(THz) frequency laser emission around 3.2 THz from localized modes in one-dimensional disordered grating systems. The disordered structures are patterned on top of the double-metal waveguide of a THz quantum cascade laser. Multiple emission peaks are observed within a frequency range corresponding to the bandgap of a periodic counterpart with no disorder, indicating the presence of mode localization aided by Bragg scattering. Simulations and experimental measurements provide strong evidence for the spatial localization of the THz laser modes.
基金supported by the National Natural Science Foundation of China(21573060,21673068)Program for Innovative Research Team in Science and Technology in University of Henan Province(16IRTSTHN002)+1 种基金Plan for Scientific Innovation Talent of Henan Province(144200510004)The High Performance Computing Center of Henan Normal University
文摘Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.