To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyze...To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems.展开更多
轨道交通客流量影响因素是轨道交通方面研究的一个关注点,不同站点客流量的时空非平稳性被认为与站域建成环境有关。通过构建时空地理加权(geographically and temporally weighted regression,GTWR)模型,揭示了土地多样性、密度、站点...轨道交通客流量影响因素是轨道交通方面研究的一个关注点,不同站点客流量的时空非平稳性被认为与站域建成环境有关。通过构建时空地理加权(geographically and temporally weighted regression,GTWR)模型,揭示了土地多样性、密度、站点属性3个方面因素在时间和空间维度上对天津市轨道交通客流量的影响。结果表明:相较于传统的地理加权(geographically weighted regression,GWR)模型和最小二乘法(ordinary least squares,OLS)模型,GTWR具有更好的拟合优度;公交站点密度对轨道交通客流产生促进作用,尤其在工作日的早晚高峰时段和中心城区位置;市中心的商业设施在工作日晚高峰吸引更多的地铁乘客,而在近郊区它们在早高峰吸引更多的地铁乘客;人口密度促进轨道交通的客流量;充足的停车场设施数量可以吸引更多的轨道交通乘客。展开更多
基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取...基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。展开更多
基金The National Key Research and Development Program of China(No.2016YFE0206800)
文摘To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems.
文摘轨道交通客流量影响因素是轨道交通方面研究的一个关注点,不同站点客流量的时空非平稳性被认为与站域建成环境有关。通过构建时空地理加权(geographically and temporally weighted regression,GTWR)模型,揭示了土地多样性、密度、站点属性3个方面因素在时间和空间维度上对天津市轨道交通客流量的影响。结果表明:相较于传统的地理加权(geographically weighted regression,GWR)模型和最小二乘法(ordinary least squares,OLS)模型,GTWR具有更好的拟合优度;公交站点密度对轨道交通客流产生促进作用,尤其在工作日的早晚高峰时段和中心城区位置;市中心的商业设施在工作日晚高峰吸引更多的地铁乘客,而在近郊区它们在早高峰吸引更多的地铁乘客;人口密度促进轨道交通的客流量;充足的停车场设施数量可以吸引更多的轨道交通乘客。
文摘基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。