For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the inte...For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.展开更多
A novel amidoxime-based fibrous adsorbent,denoted as PE/PP-g-(PAAc-co-PAO), was prepared by preirradiation grafting of acrylic acid and acrylonitrile onto polyethylene-coated polypropylene skin-core(PE/PP)fibers using...A novel amidoxime-based fibrous adsorbent,denoted as PE/PP-g-(PAAc-co-PAO), was prepared by preirradiation grafting of acrylic acid and acrylonitrile onto polyethylene-coated polypropylene skin-core(PE/PP)fibers using 60 Co γ-ray irradiation, followed by amidoximation. The original and modified PE/PP fibers were characterized by a series of characterization methods to demonstrate the attachment of amidoxime groups onto the PE/PP fibers. Breaking strength tests confirmed that the fibrous adsorbent could maintain good mechanical properties. The adsorption capacity of the PE/PP-g-(PAAc-coPAO) fibers was investigated in simulated seawater with an initial uranium concentration of 330 μg/L. The uranium adsorption capacity was 2.27 mg/g-adsorbent after 24 h in simulated seawater, and the equilibrium data were well described by the Freundlich isotherm model. The PE/PP-g-(PAAc-co-PAO) adsorbent exhibited good regeneration and recyclability during five adsorption-desorption cycles.The adsorption test was also performed in simulated radioactive effluents with uranium concentrations of 10 and100 μg/L. The effect of the pH value on the adsorption capacity was also studied. At a very low initial concentration 10 μg/L solution, the PE/PP-g-(PAAc-co-PAO)fiber could remove as much as 93.0% of the uranium, and up to 71.2% of the uranium in the simulated radioactive effluent. These results indicated that the PE/PP-g-(PAAcco-PAO) adsorbent could be used in radioactive effluents over a wide range of pH values. Therefore, the PE/PP-g-(PAAc-co-PAO) fibers, with their high uranium selectivity,good regeneration and recyclability,good mechanical properties, and low cost, are promising adsorbents for extracting uranium from aqueous solutions.展开更多
This study explores the coupling effect of pond ash(PA)and polypropylene(PP)fiber to control the strength and durability of expansive soil.The PA is used to chemically treat the expansive soil and PP fiber is adopted ...This study explores the coupling effect of pond ash(PA)and polypropylene(PP)fiber to control the strength and durability of expansive soil.The PA is used to chemically treat the expansive soil and PP fiber is adopted as reinforcement against tensile cracking.The sustainable use of PA and PP fiber are demonstrated by performing mechanical(i.e.unconfined compressive strength,split tensile strength and ultrasonic pulse velocity),chemical(pH value,electrical conductivity and calcite content),and microstructural analyses before and after 2nd,4th,6th,8th and 10th freezing-thawing(F-T)cycles.Three curing methods with 7 d,14 d and 28 d curing periods are considered to reinforce the 5%,10%,15%and 20%PA-stabilized expansive soil with 0.25%,0.5%and 1%PP fiber.In order to develop predictive models for mechanical and durability parameters,the experimental data are processed utilizing artificial neural network(ANN),in association with the leave-one-out cross-validation(LOOCV)as a resampling method and three different activation functions.The mechanical and durability properties of the PA-stabilized expansive soil subgrades are increased with PP fiber reinforcement.The results of ANN modeling predict the mechanical properties perfectly,and the correlation coefficient(R)approaches up to 0.96.展开更多
Polypropylene superfine fibers or cell porous fibers were prepared from the bi-component blend fibers of polypropylene/easlly hydro-degraded polyester(PP/EHDPET)by alkaline hydrolysis process. EHDPET is a kind of copo...Polypropylene superfine fibers or cell porous fibers were prepared from the bi-component blend fibers of polypropylene/easlly hydro-degraded polyester(PP/EHDPET)by alkaline hydrolysis process. EHDPET is a kind of copolyester that can be rapidly hydro-degraded in the hot alkaline solution. This paper discussed the kinetics of alkaline hydrolysis of EHDPET, and the effect of catalyst, bulk ratio and the content of polypropylene grafted maleic anhydride (PP-g-MAH) on the alkaline hydrolysis process. Meanwhile, the morphological change of the outer surface of blend fibers during this process was also investigated by the technology of scanning electron microscope (SEM).展开更多
文摘For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.
基金supported by the National Natural Science Foundation of China(Nos.U1732151 and 21676291)Strategic Pilot and Technology Special Funds of the Chinese Academy of Science(No.XDA02030200)
文摘A novel amidoxime-based fibrous adsorbent,denoted as PE/PP-g-(PAAc-co-PAO), was prepared by preirradiation grafting of acrylic acid and acrylonitrile onto polyethylene-coated polypropylene skin-core(PE/PP)fibers using 60 Co γ-ray irradiation, followed by amidoximation. The original and modified PE/PP fibers were characterized by a series of characterization methods to demonstrate the attachment of amidoxime groups onto the PE/PP fibers. Breaking strength tests confirmed that the fibrous adsorbent could maintain good mechanical properties. The adsorption capacity of the PE/PP-g-(PAAc-coPAO) fibers was investigated in simulated seawater with an initial uranium concentration of 330 μg/L. The uranium adsorption capacity was 2.27 mg/g-adsorbent after 24 h in simulated seawater, and the equilibrium data were well described by the Freundlich isotherm model. The PE/PP-g-(PAAc-co-PAO) adsorbent exhibited good regeneration and recyclability during five adsorption-desorption cycles.The adsorption test was also performed in simulated radioactive effluents with uranium concentrations of 10 and100 μg/L. The effect of the pH value on the adsorption capacity was also studied. At a very low initial concentration 10 μg/L solution, the PE/PP-g-(PAAc-co-PAO)fiber could remove as much as 93.0% of the uranium, and up to 71.2% of the uranium in the simulated radioactive effluent. These results indicated that the PE/PP-g-(PAAcco-PAO) adsorbent could be used in radioactive effluents over a wide range of pH values. Therefore, the PE/PP-g-(PAAc-co-PAO) fibers, with their high uranium selectivity,good regeneration and recyclability,good mechanical properties, and low cost, are promising adsorbents for extracting uranium from aqueous solutions.
文摘This study explores the coupling effect of pond ash(PA)and polypropylene(PP)fiber to control the strength and durability of expansive soil.The PA is used to chemically treat the expansive soil and PP fiber is adopted as reinforcement against tensile cracking.The sustainable use of PA and PP fiber are demonstrated by performing mechanical(i.e.unconfined compressive strength,split tensile strength and ultrasonic pulse velocity),chemical(pH value,electrical conductivity and calcite content),and microstructural analyses before and after 2nd,4th,6th,8th and 10th freezing-thawing(F-T)cycles.Three curing methods with 7 d,14 d and 28 d curing periods are considered to reinforce the 5%,10%,15%and 20%PA-stabilized expansive soil with 0.25%,0.5%and 1%PP fiber.In order to develop predictive models for mechanical and durability parameters,the experimental data are processed utilizing artificial neural network(ANN),in association with the leave-one-out cross-validation(LOOCV)as a resampling method and three different activation functions.The mechanical and durability properties of the PA-stabilized expansive soil subgrades are increased with PP fiber reinforcement.The results of ANN modeling predict the mechanical properties perfectly,and the correlation coefficient(R)approaches up to 0.96.
文摘Polypropylene superfine fibers or cell porous fibers were prepared from the bi-component blend fibers of polypropylene/easlly hydro-degraded polyester(PP/EHDPET)by alkaline hydrolysis process. EHDPET is a kind of copolyester that can be rapidly hydro-degraded in the hot alkaline solution. This paper discussed the kinetics of alkaline hydrolysis of EHDPET, and the effect of catalyst, bulk ratio and the content of polypropylene grafted maleic anhydride (PP-g-MAH) on the alkaline hydrolysis process. Meanwhile, the morphological change of the outer surface of blend fibers during this process was also investigated by the technology of scanning electron microscope (SEM).