The effect of far-infrared (FIR) irradiation pasteurization on fungi was quantitatively evaluated and compared with the effect of thermal conductive heating. After the bulk temperature of the sterile saline irradiated...The effect of far-infrared (FIR) irradiation pasteurization on fungi was quantitatively evaluated and compared with the effect of thermal conductive heating. After the bulk temperature of the sterile saline irradiated by FIR reached a steady given temperature, yeast cells (Candida albicans NBRC 1950 and Saccharomyces cerevisiae NBRC 1067) or fungal spores (Aspergillus niger NBRC 4781) were inoculated and FIR heating was conducted. A mullite cylinder FIR heater, with a main wavelength of 4 - 7 μm, was used for FIR heating. Death of fungi by FIR heating and by thermal conductive heating both followed first-order reaction kinetics, and the apparent death rate constants under different temperature conditions were obtained. For the same bulk temperatures, pasteurization by FIR heating was more effective than thermal conductive heating. The activation energy for the death of fungi by FIR irradiation was slightly lower than thermal conductive heating, indicating differences in the mechanism of action.展开更多
On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) s...On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) spectra, we find that the ring topological structure and electron-electron interaction have great influence on the FIR spectra. The two unknown transition peaks in the experiment are determined theoretically. The theoretical results are in good agreement with the experiments.展开更多
To promote the application of far-infrared technology,functional far-infrared devices with high performance are needed.Here,we propose a design scheme to develop a wide-incident-angle far-infrared absorber,which consi...To promote the application of far-infrared technology,functional far-infrared devices with high performance are needed.Here,we propose a design scheme to develop a wide-incident-angle far-infrared absorber,which consists of a periodically semicircle-patterned graphene sheet,a lossless inter-dielectric spacer and a gold reflecting film.Under normal incidence for both TE-and TM-polarization modes,the bandwidth of 90%absorption of the proposed far-infrared absorber is ranging from 6.76 THz to 11.05 THz.The absorption remains more than 90%over a 4.29-THz broadband range when the incident angle is up to 50◦for both TE-and TM-polarization modes.The peak absorbance of the absorber can be flexibly tuned from 10%to 100%by changing the chemical potential from 0 eV to 0.6 eV.The tunable broadband far-infrared absorber has promising applications in sensing,detection,and stealth objects.展开更多
We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the inter...We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = O. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.展开更多
We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot resu...We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.展开更多
Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been ...Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been systematically studied independently of the thermal effect. The purpose of this study was to investigate the non-thermal biological effect of graphene far-infrared ray (gFIR) on Saccharomyces cerevisiae cells. In this work, stringent control of the cultivation conditions was carried out to ensure the stability and constancy of the culture and its temperature. Flow cytometry was used to detect the non-thermal effect of gFIR irradiation on cell membrane permeability, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) content. Compared with the control group, cell membrane permeability of the gFIR exposure cells decreased by 4.7%, MMP increased by 16% and intracellular ROS reduced by 10.7%. The results revealed the valuable features of the non-thermal biological effect of gFIR on Saccharomyces cerevisiae cells, and the further analysis demonstrated that graphene far-infrared materials should have great application value in disease prevention and health promotion.展开更多
We observed the nearby galaxy M31 in the 〔C II〕158 μm emission line. An extended component was detected over the central 1 5 kpc region with a line-to-continuum ratio of 〔C II〕/〔40-120μm〕6×10 -3 . This ...We observed the nearby galaxy M31 in the 〔C II〕158 μm emission line. An extended component was detected over the central 1 5 kpc region with a line-to-continuum ratio of 〔C II〕/〔40-120μm〕6×10 -3 . This ratio is 3 times larger than that of the Galactic counterpart and is comparable to that in the general Galactic Plane. We expect that the difference between the two central regions are due to different gas densities; the self-shielding of CO molecules decreases the C + abundance at the higher density in the Galactic case.展开更多
Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 16...Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.展开更多
With the rapid development of electric power systems,load estimation plays an important role in system operation and planning.Usually,load estimation techniques contain traditional,time series,regression analysis-base...With the rapid development of electric power systems,load estimation plays an important role in system operation and planning.Usually,load estimation techniques contain traditional,time series,regression analysis-based,and machine learning-based estimation.Since the machine learning-based method can lead to better performance,in this paper,a deep learning-based load estimation algorithm using image fingerprint and attention mechanism is proposed.First,an image fingerprint construction is proposed for training data.After the data preprocessing,the training data matrix is constructed by the cyclic shift and cubic spline interpolation.Then,the linear mapping and the gray-color transformation method are proposed to form the color image fingerprint.Second,a convolutional neural network(CNN)combined with an attentionmechanism is proposed for training performance improvement.At last,an experiment is carried out to evaluate the estimation performance.Compared with the support vector machine method,CNN method and long short-term memory method,the proposed algorithm has the best load estimation performance.展开更多
With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication...With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication(RSSI)fingerprintbased localization method has obtained much development in both academia and industries.In this work,we introduce an efficient way to reduce the labor-intensive site survey process,which uses an UWB/IMU-assisted fingerprint construction(UAFC)and localization framework based on the principle of Automatic radio map generation scheme(ARMGS)is proposed to replace the traditional manual measurement.To be specific,UWB devices are employed to estimate the coordinates when the collector is moved in a reference point(RP).An anchor self-localization method is investigated to further reduce manual measurement work in a wide and complex environment,which is also a grueling,time-consuming process that is lead to artificial errors.Moreover,the measurements of IMU are incorporated into the UWB localization algorithm and improve the label accuracy in fingerprint.In addition,the weighted k-nearest neighbor(WKNN)algorithm is applied to online localization phase.Finally,filed experiments are carried out and the results confirm the effectiveness of the proposed approach.展开更多
Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on de...Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on deep neural network(DNN)can performfeature engineering and attain accuracy rates of over 98%,research has demonstrated thatDNNis vulnerable to adversarial samples.As a result,many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success.However,these methods suffer from high bandwidth overhead or require access to the target model,which is unrealistic.This paper proposes CMAES-WFD,a black-box WF defense based on adversarial samples.The process of generating adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance Matrix Adaptation Evolution Strategy(CMAES)optimization algorithm.Perturbations are injected into the local parts of the original traffic to control bandwidth overhead.According to the experiment results,CMAES-WFD was able to significantly decrease the accuracy of Deep Fingerprinting(DF)and VarCnn to below 8.3%and the bandwidth overhead to a maximum of only 14.6%and 20.5%,respectively.Specially,for Automated Website Fingerprinting(AWF)with simple structure,CMAES-WFD reduced the classification accuracy to only 6.7%and the bandwidth overhead to less than 7.4%.Moreover,it was demonstrated that CMAES-WFD was robust against adversarial training to a certain extent.展开更多
<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> ...<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> 60 volunteers were selected in hospital from September 2019 to June 2020, and the total score of face, skin spots, texture, wrinkles and pores were observed before and after low energy far-infrared irradiation treatment with VISIA skin tester. <strong>Results:</strong> After 2 weeks of low energy far-infrared irradiation treatment, the total skin score of volunteers increased significantly (P < 0.01). In the itemized statistics, the moisture value, stain value and wrinkle value increased significantly (P < 0.05). <strong>Conclusion:</strong> Low energy far-infrared irradiation can significantly improve the facial skin quality of healthy people.展开更多
The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprin...The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods.展开更多
The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called M...The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.展开更多
This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC)....This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC).This method innovatively combines contour edge tracking with affinity propagation(AP)clustering for peak detection in GC×GC fingerprints,the first in this field.Contour edge tracking signif-icantly reduces false positives caused by“burr”signals,while AP clustering enhances detection accuracy in the face of false negatives.The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin.PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples.Furthermore,this algorithm compares the GC×GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins.The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues.Each sample exhibits unique characteristic components alongside common ones,and vari-ations in content may influence their therapeutic effectiveness.This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional(2D)fingerprint analysis of GC×GC data.展开更多
This paper introduces Certis, a powerful framework that addresses the challenges of cloud asset tracking, management, and threat detection in modern cybersecurity landscapes. It enhances asset identification and anoma...This paper introduces Certis, a powerful framework that addresses the challenges of cloud asset tracking, management, and threat detection in modern cybersecurity landscapes. It enhances asset identification and anomaly detection through SSL certificate parsing, cloud service provider integration, and advanced fingerprinting techniques like JARM at the application layer. Current work will focus on cross-layer malicious behavior identification to further enhance its capabilities, including minimizing false positives through AI-based learning techniques. Certis promises to offer a powerful solution for organizations seeking proactive cybersecurity defenses in the face of evolving threats.展开更多
Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint r...Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.展开更多
[Objectives]To explore the influence of different times of steaming and exposing to the sun on the fingerprint of Polygonati Rhizoma by studying the HPLC fingerprint of Polygonati Rhizoma processed products with diffe...[Objectives]To explore the influence of different times of steaming and exposing to the sun on the fingerprint of Polygonati Rhizoma by studying the HPLC fingerprint of Polygonati Rhizoma processed products with different times of steaming and exposing to the sun,and to provide a basis for the determination of the best processing technology of Polygonati Rhizoma.[Methods]SETSAIL II AQ-C 18(5μm×250 mm×4.6 mm)was used as the column,the column temperature was 30℃,pure water(A)and acetonitrile(B)were eluted gradually,0-10 min,B(5%-10%),10-30 min,B(10%-35%),30-40 min,B(35%-60%),40-45 min,B(60%-100%),flow rate 1 mL/min,absorption wavelength 200 nm.[Results]The relative retained peak area RSDs of the common peaks in the precision,reproducibility and stability tests were all less than 5%.There were 17 common peaks in the fingerprint of nine batches of samples,and the retention time of Peak 2 was basically the same as that of the reference peak of 5-HMF.Peak 4 mainly existed in the chromatogram of Sample 3 to Sample 5,peaks 5 and 11 mainly existed after Sample 3,peaks 9,14 and 16 mainly existed after Sample 6,and peaks 12 and 17 mainly existed after Sample 4.[Conclusions]A total of 17 common peaks were obtained,and the Peak 2 was the designated peak,and the chemical components of each processed product were different.展开更多
While being successful in the detection and attribution of climate change,the optimal fingerprinting method(OFM)may have some limitations from a physics-and-dynamics-based viewpoint.Here,an analysis is made on the lin...While being successful in the detection and attribution of climate change,the optimal fingerprinting method(OFM)may have some limitations from a physics-and-dynamics-based viewpoint.Here,an analysis is made on the linearity,noninteraction,and stationary-variability assumptions adopted by OFM.It is suggested that furthering OFM needs a viewpoint beyond statistical science,and the method should be combined with theoretical tools in the dynamics and physics of the Earth system,so as to be applied for the detection and attribution of nonlinear climate change including tipping elements within the Earth system.展开更多
Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this ...Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this study to comprehensively evaluate the quality of Antiviral Mixture(AM),and Comprehensive Linear Quantification Fingerprint Method(CLQFM)was used to process the data.Quantitative analysis of three active substances in TCM was conducted.A fivewavelength fusion fingerprint(FWFF)was developed,using second-order derivatives of UV spectral data to differentiate sample levels effectively.The combination of HPLC and UV spectrophotometry,along with electrochemical fingerprinting(ECFP),successfully evaluated total active substances.Ultimately,a multidimensional profiling analytical system for TCM was developed.展开更多
文摘The effect of far-infrared (FIR) irradiation pasteurization on fungi was quantitatively evaluated and compared with the effect of thermal conductive heating. After the bulk temperature of the sterile saline irradiated by FIR reached a steady given temperature, yeast cells (Candida albicans NBRC 1950 and Saccharomyces cerevisiae NBRC 1067) or fungal spores (Aspergillus niger NBRC 4781) were inoculated and FIR heating was conducted. A mullite cylinder FIR heater, with a main wavelength of 4 - 7 μm, was used for FIR heating. Death of fungi by FIR heating and by thermal conductive heating both followed first-order reaction kinetics, and the apparent death rate constants under different temperature conditions were obtained. For the same bulk temperatures, pasteurization by FIR heating was more effective than thermal conductive heating. The activation energy for the death of fungi by FIR irradiation was slightly lower than thermal conductive heating, indicating differences in the mechanism of action.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074025)the National Basic Research Program of China (Grant No. 2011CB922200)the China Academy of Engineering and Physics(‘909’)
文摘On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) spectra, we find that the ring topological structure and electron-electron interaction have great influence on the FIR spectra. The two unknown transition peaks in the experiment are determined theoretically. The theoretical results are in good agreement with the experiments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0200306)the National Natural Science Foundation of China(Grant Nos.61871355 and 61831012).
文摘To promote the application of far-infrared technology,functional far-infrared devices with high performance are needed.Here,we propose a design scheme to develop a wide-incident-angle far-infrared absorber,which consists of a periodically semicircle-patterned graphene sheet,a lossless inter-dielectric spacer and a gold reflecting film.Under normal incidence for both TE-and TM-polarization modes,the bandwidth of 90%absorption of the proposed far-infrared absorber is ranging from 6.76 THz to 11.05 THz.The absorption remains more than 90%over a 4.29-THz broadband range when the incident angle is up to 50◦for both TE-and TM-polarization modes.The peak absorbance of the absorber can be flexibly tuned from 10%to 100%by changing the chemical potential from 0 eV to 0.6 eV.The tunable broadband far-infrared absorber has promising applications in sensing,detection,and stealth objects.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674084)
文摘We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = O. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.
基金supported by the National Natural Science Foundation of China (Grant No.11074025)the National Basic Research Program of China (Grant No.2011CB922200)a grant from the China Academy of Engineering Physics
文摘We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.
文摘Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been systematically studied independently of the thermal effect. The purpose of this study was to investigate the non-thermal biological effect of graphene far-infrared ray (gFIR) on Saccharomyces cerevisiae cells. In this work, stringent control of the cultivation conditions was carried out to ensure the stability and constancy of the culture and its temperature. Flow cytometry was used to detect the non-thermal effect of gFIR irradiation on cell membrane permeability, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) content. Compared with the control group, cell membrane permeability of the gFIR exposure cells decreased by 4.7%, MMP increased by 16% and intracellular ROS reduced by 10.7%. The results revealed the valuable features of the non-thermal biological effect of gFIR on Saccharomyces cerevisiae cells, and the further analysis demonstrated that graphene far-infrared materials should have great application value in disease prevention and health promotion.
文摘We observed the nearby galaxy M31 in the 〔C II〕158 μm emission line. An extended component was detected over the central 1 5 kpc region with a line-to-continuum ratio of 〔C II〕/〔40-120μm〕6×10 -3 . This ratio is 3 times larger than that of the Galactic counterpart and is comparable to that in the general Galactic Plane. We expect that the difference between the two central regions are due to different gas densities; the self-shielding of CO molecules decreases the C + abundance at the higher density in the Galactic case.
基金This work was supported by the Scientific Research Foundation for High Level Talents of Qingdao Agricultural University,China(665-1120015)the National Program for Quality and Safety Risk Assessment of Agricultural Products of China(GJFP2019011)the National Natural Science Foundation of China(42207017).
文摘Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.
文摘With the rapid development of electric power systems,load estimation plays an important role in system operation and planning.Usually,load estimation techniques contain traditional,time series,regression analysis-based,and machine learning-based estimation.Since the machine learning-based method can lead to better performance,in this paper,a deep learning-based load estimation algorithm using image fingerprint and attention mechanism is proposed.First,an image fingerprint construction is proposed for training data.After the data preprocessing,the training data matrix is constructed by the cyclic shift and cubic spline interpolation.Then,the linear mapping and the gray-color transformation method are proposed to form the color image fingerprint.Second,a convolutional neural network(CNN)combined with an attentionmechanism is proposed for training performance improvement.At last,an experiment is carried out to evaluate the estimation performance.Compared with the support vector machine method,CNN method and long short-term memory method,the proposed algorithm has the best load estimation performance.
文摘With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication(RSSI)fingerprintbased localization method has obtained much development in both academia and industries.In this work,we introduce an efficient way to reduce the labor-intensive site survey process,which uses an UWB/IMU-assisted fingerprint construction(UAFC)and localization framework based on the principle of Automatic radio map generation scheme(ARMGS)is proposed to replace the traditional manual measurement.To be specific,UWB devices are employed to estimate the coordinates when the collector is moved in a reference point(RP).An anchor self-localization method is investigated to further reduce manual measurement work in a wide and complex environment,which is also a grueling,time-consuming process that is lead to artificial errors.Moreover,the measurements of IMU are incorporated into the UWB localization algorithm and improve the label accuracy in fingerprint.In addition,the weighted k-nearest neighbor(WKNN)algorithm is applied to online localization phase.Finally,filed experiments are carried out and the results confirm the effectiveness of the proposed approach.
基金the Key JCJQ Program of China:2020-JCJQ-ZD-021-00 and 2020-JCJQ-ZD-024-12.
文摘Website fingerprinting,also known asWF,is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination,even when using the Tor anonymity network.While advanced attacks based on deep neural network(DNN)can performfeature engineering and attain accuracy rates of over 98%,research has demonstrated thatDNNis vulnerable to adversarial samples.As a result,many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success.However,these methods suffer from high bandwidth overhead or require access to the target model,which is unrealistic.This paper proposes CMAES-WFD,a black-box WF defense based on adversarial samples.The process of generating adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance Matrix Adaptation Evolution Strategy(CMAES)optimization algorithm.Perturbations are injected into the local parts of the original traffic to control bandwidth overhead.According to the experiment results,CMAES-WFD was able to significantly decrease the accuracy of Deep Fingerprinting(DF)and VarCnn to below 8.3%and the bandwidth overhead to a maximum of only 14.6%and 20.5%,respectively.Specially,for Automated Website Fingerprinting(AWF)with simple structure,CMAES-WFD reduced the classification accuracy to only 6.7%and the bandwidth overhead to less than 7.4%.Moreover,it was demonstrated that CMAES-WFD was robust against adversarial training to a certain extent.
文摘<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> 60 volunteers were selected in hospital from September 2019 to June 2020, and the total score of face, skin spots, texture, wrinkles and pores were observed before and after low energy far-infrared irradiation treatment with VISIA skin tester. <strong>Results:</strong> After 2 weeks of low energy far-infrared irradiation treatment, the total skin score of volunteers increased significantly (P < 0.01). In the itemized statistics, the moisture value, stain value and wrinkle value increased significantly (P < 0.05). <strong>Conclusion:</strong> Low energy far-infrared irradiation can significantly improve the facial skin quality of healthy people.
基金supported by National Key R&D Program of China(2019YFB2102303)National Natural Science Foundation of China(NSFC61971014,NSFC11675199)Young Backbone Teacher Training Program of Henan Colleges and Universities(2021GGJS170).
文摘The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods.
基金supported by the National Key Research and Development Program of China(No.2016YFB0800601)the Key Program of NSFC-Tongyong Union Foundation(No.U1636209)+1 种基金the National Natural Science Foundation of China(61602358)the Key Research and Development Programs of Shaanxi(No.2019ZDLGY13-04,No.2019ZDLGY13-07)。
文摘The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.
基金supported by Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization,Hunan Province Natural Science Fund,China(Grant Nos.:2020JJ4569,2023JJ60378)Hunan Province College Students'Innovation and Entrepreneurship Training Program,China(Grant Nos.:S202110530044,S202210530048).
文摘This study introduces an innovative contour detection algorithm,PeakCET,designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram(GC×GC).This method innovatively combines contour edge tracking with affinity propagation(AP)clustering for peak detection in GC×GC fingerprints,the first in this field.Contour edge tracking signif-icantly reduces false positives caused by“burr”signals,while AP clustering enhances detection accuracy in the face of false negatives.The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin.PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples.Furthermore,this algorithm compares the GC×GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins.The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues.Each sample exhibits unique characteristic components alongside common ones,and vari-ations in content may influence their therapeutic effectiveness.This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional(2D)fingerprint analysis of GC×GC data.
文摘This paper introduces Certis, a powerful framework that addresses the challenges of cloud asset tracking, management, and threat detection in modern cybersecurity landscapes. It enhances asset identification and anomaly detection through SSL certificate parsing, cloud service provider integration, and advanced fingerprinting techniques like JARM at the application layer. Current work will focus on cross-layer malicious behavior identification to further enhance its capabilities, including minimizing false positives through AI-based learning techniques. Certis promises to offer a powerful solution for organizations seeking proactive cybersecurity defenses in the face of evolving threats.
基金supported in part by the National Science Foundation of China under Grants U22B2027,62172297,62102262,61902276 and 62272311,Tianjin Intelligent Manufacturing Special Fund Project under Grant 20211097the China Guangxi Science and Technology Plan Project(Guangxi Science and Technology Base and Talent Special Project)under Grant AD23026096(Application Number 2022AC20001)+1 种基金Hainan Provincial Natural Science Foundation of China under Grant 622RC616CCF-Nsfocus Kunpeng Fund Project under Grant CCF-NSFOCUS202207.
文摘Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.
基金Supported by General Program of Guangxi Natural Science Foundation(2022GXNSFAA035599).
文摘[Objectives]To explore the influence of different times of steaming and exposing to the sun on the fingerprint of Polygonati Rhizoma by studying the HPLC fingerprint of Polygonati Rhizoma processed products with different times of steaming and exposing to the sun,and to provide a basis for the determination of the best processing technology of Polygonati Rhizoma.[Methods]SETSAIL II AQ-C 18(5μm×250 mm×4.6 mm)was used as the column,the column temperature was 30℃,pure water(A)and acetonitrile(B)were eluted gradually,0-10 min,B(5%-10%),10-30 min,B(10%-35%),30-40 min,B(35%-60%),40-45 min,B(60%-100%),flow rate 1 mL/min,absorption wavelength 200 nm.[Results]The relative retained peak area RSDs of the common peaks in the precision,reproducibility and stability tests were all less than 5%.There were 17 common peaks in the fingerprint of nine batches of samples,and the retention time of Peak 2 was basically the same as that of the reference peak of 5-HMF.Peak 4 mainly existed in the chromatogram of Sample 3 to Sample 5,peaks 5 and 11 mainly existed after Sample 3,peaks 9,14 and 16 mainly existed after Sample 6,and peaks 12 and 17 mainly existed after Sample 4.[Conclusions]A total of 17 common peaks were obtained,and the Peak 2 was the designated peak,and the chemical components of each processed product were different.
基金support from the National Natural Science Foundation of China(Grant No.42175070)。
文摘While being successful in the detection and attribution of climate change,the optimal fingerprinting method(OFM)may have some limitations from a physics-and-dynamics-based viewpoint.Here,an analysis is made on the linearity,noninteraction,and stationary-variability assumptions adopted by OFM.It is suggested that furthering OFM needs a viewpoint beyond statistical science,and the method should be combined with theoretical tools in the dynamics and physics of the Earth system,so as to be applied for the detection and attribution of nonlinear climate change including tipping elements within the Earth system.
基金This study was supported by the National Natural Science Foundation of China(No.81573586).
文摘Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this study to comprehensively evaluate the quality of Antiviral Mixture(AM),and Comprehensive Linear Quantification Fingerprint Method(CLQFM)was used to process the data.Quantitative analysis of three active substances in TCM was conducted.A fivewavelength fusion fingerprint(FWFF)was developed,using second-order derivatives of UV spectral data to differentiate sample levels effectively.The combination of HPLC and UV spectrophotometry,along with electrochemical fingerprinting(ECFP),successfully evaluated total active substances.Ultimately,a multidimensional profiling analytical system for TCM was developed.