Using viscose fiber (VF) as starting material and common steam as activating agent, formation of oxygen structures in activated carbon fiber is investigated. In the preparation of samples, VF was first heated at tempe...Using viscose fiber (VF) as starting material and common steam as activating agent, formation of oxygen structures in activated carbon fiber is investigated. In the preparation of samples, VF was first heated at temperatures between 450℃ and 900℃ in N_2 artmosphere. Then, in a successive activation stage, the product carbonized at 600℃ was activated in steam at 450-900℃ for 30 min, and at 600℃ for 5-30 min. The other carbonization products were activated at 600 and 900℃ for 30 min respectively. The products activated at 900℃ were then activated at 450℃ for 30 min again. The starting materiah carbonized products and all activation products were examined by FT-IR spectroscopy and some products were examined by X-ray photoelectron spectroscope (XPS). And the yields of the carbonized and activated products were calculated. By analysing these spectra, the amount of oxygen-containing functional groups of the activated products attained under various activation time, various activation temperature and various previous carbonization temperature was determined.展开更多
Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectr...Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly.展开更多
The conductivity of Polypyrrole-viscose conducting fiber prepared with author’s method can be shown up to as high as 2.106x10<sup>-2</sup> S/cm. The main factors influencing the conductivity are the conce...The conductivity of Polypyrrole-viscose conducting fiber prepared with author’s method can be shown up to as high as 2.106x10<sup>-2</sup> S/cm. The main factors influencing the conductivity are the concentration of FeCl<sub>3</sub> used as dopant and initiator, the treatment time of viscose fiber as base material in FeCl<sub>3</sub> solution, temperature and polymerization time. It is found that the orientation and crystallization degree of viscose fiber keep constant before and after conducting treatment and the mechanical properties of conducting fiber is the same as that of base material. In addition, the distribution of polypyrrole in viscose fiber, and its effect on the conductivity were investigated in details by TEM.展开更多
Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely C...Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely Chrastil,Cegarra-Puente,and Vickerstaff,were used to fit the experimental dyeing rate points,showing that the best result was obtained by the Chrastil equation.BV fibers displayed slightly higher dyeing rates and dye adsorption values at initial stages,but a bit lower dye adsorption values at equilibrium than CV fibers.Furthermore,the dyeing of BV fibers exhibited lower activation energies and higher dyeing rate constants than that of CV fibers,and therefore showed slightly lower dependence on temperature.展开更多
Based on the analysis of the properties of Nomex 450 and Nomex 462,the thermal properties of Nomex 462/Lenzing Viscose Flame retardent(FR)blending materials were analyzed.It was discovered through burning test and The...Based on the analysis of the properties of Nomex 450 and Nomex 462,the thermal properties of Nomex 462/Lenzing Viscose Flame retardent(FR)blending materials were analyzed.It was discovered through burning test and Thermal Gravity(TG)analysis that the blended material was superior in thermal behaviors to the material made from either Nomex or Viscose FR filament,when the ratio of Nomex and Lenzing Viscose FR reached 80∶20,and excellent thermal properties were achieved with the value of Limiting Oxygen Index(LOI)up to 36.1%.Blending Nomex and Viscose FR filaments may be recommended for better fire retardant property of related fabric.展开更多
A fiber-array probe is designed to measure the damping behavior of a small perturbed shock wave in an opaque substance, by which the effective viscosity of substance under the condition of high temperature and high pr...A fiber-array probe is designed to measure the damping behavior of a small perturbed shock wave in an opaque substance, by which the effective viscosity of substance under the condition of high temperature and high pressure can be constrained according to the flyer-impact technique. It shows that the measurement precision of the shock arrival time by using this technique is within 2 ns. To easily compare with the results given by electrical pin technique, the newly developed method is used to investigate the effective viscosity of aluminum (Al). The shear viscosity coefficient of A1 is determined to be 1700 Pa.s at 71 GPa with a strain rate of 3.6× 10^6 s-1, which is in good agreement with the results of other methods. The advantage of the new technique over the electrical pin one is that it is applicable for studying the non-conductive substances.展开更多
Although polyimide fibers are excellent intrinsic flame-retardant fibers, their price is so high that they are rarely used in clothing. To expand their application, the polyimide fibers were blended with flame-retarda...Although polyimide fibers are excellent intrinsic flame-retardant fibers, their price is so high that they are rarely used in clothing. To expand their application, the polyimide fibers were blended with flame-retardant viscose fibers at a ratio of 30∶70, and the blended yarns were woven with flame-retardant polyester filaments. Fabrics with different parameters, including fabric weaves, warp yarn densities, and fabric layers, were designed, and the effects of those fabric parameters on mechanical properties and flame-retardant properties were tested and analyzed. The results show that the tearing load of the fabrics is affected by fabric weaves, warp yarn densities, and fabric layers, and the tearing load of the weft mountain weave fabric and the twill weave fabric is higher than that of the plain weave fabric. The bursting load of the fabric increases with the increase of warp yarn densities and layers. Among the tested fabric samples, the triple-layer twill fabric has the best flame-retardant performance, which meets the standard of flame-retardant protective fabric Grade B1 level. The research of this paper would provide guidance for the development and production of polyimide blended fabrics.展开更多
The biological variety is mainly connected with presence of the field ecosites,which determine the mechanism of interaction(the symbiosis,pathogenesis,and etc.) that differ typically of such
文摘Using viscose fiber (VF) as starting material and common steam as activating agent, formation of oxygen structures in activated carbon fiber is investigated. In the preparation of samples, VF was first heated at temperatures between 450℃ and 900℃ in N_2 artmosphere. Then, in a successive activation stage, the product carbonized at 600℃ was activated in steam at 450-900℃ for 30 min, and at 600℃ for 5-30 min. The other carbonization products were activated at 600 and 900℃ for 30 min respectively. The products activated at 900℃ were then activated at 450℃ for 30 min again. The starting materiah carbonized products and all activation products were examined by FT-IR spectroscopy and some products were examined by X-ray photoelectron spectroscope (XPS). And the yields of the carbonized and activated products were calculated. By analysing these spectra, the amount of oxygen-containing functional groups of the activated products attained under various activation time, various activation temperature and various previous carbonization temperature was determined.
基金General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of Chinathe Project of Shanghai Municipal Bureau of Quality and Technical Supervision,China(No. 2010-Z17)
文摘Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly.
文摘The conductivity of Polypyrrole-viscose conducting fiber prepared with author’s method can be shown up to as high as 2.106x10<sup>-2</sup> S/cm. The main factors influencing the conductivity are the concentration of FeCl<sub>3</sub> used as dopant and initiator, the treatment time of viscose fiber as base material in FeCl<sub>3</sub> solution, temperature and polymerization time. It is found that the orientation and crystallization degree of viscose fiber keep constant before and after conducting treatment and the mechanical properties of conducting fiber is the same as that of base material. In addition, the distribution of polypyrrole in viscose fiber, and its effect on the conductivity were investigated in details by TEM.
基金National Key Technology R&D Program of the Chinese Ministry of Science and Technology,China(No.2007BAE41B04)
文摘Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely Chrastil,Cegarra-Puente,and Vickerstaff,were used to fit the experimental dyeing rate points,showing that the best result was obtained by the Chrastil equation.BV fibers displayed slightly higher dyeing rates and dye adsorption values at initial stages,but a bit lower dye adsorption values at equilibrium than CV fibers.Furthermore,the dyeing of BV fibers exhibited lower activation energies and higher dyeing rate constants than that of CV fibers,and therefore showed slightly lower dependence on temperature.
文摘Based on the analysis of the properties of Nomex 450 and Nomex 462,the thermal properties of Nomex 462/Lenzing Viscose Flame retardent(FR)blending materials were analyzed.It was discovered through burning test and Thermal Gravity(TG)analysis that the blended material was superior in thermal behaviors to the material made from either Nomex or Viscose FR filament,when the ratio of Nomex and Lenzing Viscose FR reached 80∶20,and excellent thermal properties were achieved with the value of Limiting Oxygen Index(LOI)up to 36.1%.Blending Nomex and Viscose FR filaments may be recommended for better fire retardant property of related fabric.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10974160 and 11002120)the Fundamental Research Funds for the Central Universities (Grant No.SWJTU12CX085)
文摘A fiber-array probe is designed to measure the damping behavior of a small perturbed shock wave in an opaque substance, by which the effective viscosity of substance under the condition of high temperature and high pressure can be constrained according to the flyer-impact technique. It shows that the measurement precision of the shock arrival time by using this technique is within 2 ns. To easily compare with the results given by electrical pin technique, the newly developed method is used to investigate the effective viscosity of aluminum (Al). The shear viscosity coefficient of A1 is determined to be 1700 Pa.s at 71 GPa with a strain rate of 3.6× 10^6 s-1, which is in good agreement with the results of other methods. The advantage of the new technique over the electrical pin one is that it is applicable for studying the non-conductive substances.
基金National Natural Science Foundation of China (No.11802161)Natural Science Foundation of Fujian Province,China (No.2020J05160)Startup Foundation for Doctors of Quanzhou Normal University,China (No.H18012)。
文摘Although polyimide fibers are excellent intrinsic flame-retardant fibers, their price is so high that they are rarely used in clothing. To expand their application, the polyimide fibers were blended with flame-retardant viscose fibers at a ratio of 30∶70, and the blended yarns were woven with flame-retardant polyester filaments. Fabrics with different parameters, including fabric weaves, warp yarn densities, and fabric layers, were designed, and the effects of those fabric parameters on mechanical properties and flame-retardant properties were tested and analyzed. The results show that the tearing load of the fabrics is affected by fabric weaves, warp yarn densities, and fabric layers, and the tearing load of the weft mountain weave fabric and the twill weave fabric is higher than that of the plain weave fabric. The bursting load of the fabric increases with the increase of warp yarn densities and layers. Among the tested fabric samples, the triple-layer twill fabric has the best flame-retardant performance, which meets the standard of flame-retardant protective fabric Grade B1 level. The research of this paper would provide guidance for the development and production of polyimide blended fabrics.
文摘The biological variety is mainly connected with presence of the field ecosites,which determine the mechanism of interaction(the symbiosis,pathogenesis,and etc.) that differ typically of such