Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut...Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
Flood disasters as Climate change hazards are common in developing countries, particularly in communities along the river Gambia. Local communities, for instance, had their local coping strategies that enabled them to...Flood disasters as Climate change hazards are common in developing countries, particularly in communities along the river Gambia. Local communities, for instance, had their local coping strategies that enabled them to stay in their communities even amid these ordeals, and climate change disaster threats. This work strives to understand flood impacts and the local peoples’ adaptation or coping strategies along the River Gambia basin. A community-based cross-sectional research study of 422 research participants of which 294 are males (69.7%) and females 128 (30.3%), and a focus group discussion of 10 groups which comprised 5 female groups and 5 male groups respectively found that 98.6% of the households experienced floods in their community, and 70.6% experienced flood in their houses, 2.1% have impending flood information and 88.4% do not know evacuation centres. The majority of the households had some local coping strategies, but they acknowledged their insufficient effectiveness. The result also shows that the impact of floods on farmlands, roads, buildings, and livestock was greatly felt. Coping strategies such as sandbags, raised elevations, contour bonds, dikes, and buildings on highlands were all found to be common mechanisms the local people used. The study opines that floods affect communities, but the effects vary depending on individual assets.展开更多
Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The e...Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The existing studies on tobacco cultivation in Zimbabwe present contradictory findings on the determinants and impacts of adoption, leaving unanswered questions about the crop’s sustainability impact in the country. This article investigates the determinants of smallholder farmers’ decisions to grow tobacco and the associated impacts of adoption. Random and purposive sampling were used to select 273 household surveys, including tobacco and non-tobacco smallholder farmers, and 56 expert interviews to answer the research questions. We employed regression models alongside expert interviews and document analysis to identify the determinants influencing the decision-making process of smallholder farmers in Zimbabwe regarding tobacco cultivation. Additionally, our investigation aimed to elucidate the perceived impacts associated with the adoption of this agricultural practice. The regression analysis indicated that the farmer’s age, education level, farming experience, family size, household income, and perceived high farm profitability are significant drivers of tobacco adoption. We also discovered divergent and convergent perceptions of the critical impacts of tobacco cultivation. The study highlights the need for proactive multi-stakeholder collaboration and sustainable financial arrangements to address the negative impacts of tobacco production. As the primary stakeholder responsible for regulating and promoting agricultural activities, the Zimbabwean government should provide meaningful financial support, increase access to credit, and ensure better market facilities for alternative crops to reduce the over-dependence on tobacco.展开更多
This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of c...This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.展开更多
Globally, human activities have a significant impact on the diversity, abundance, and distribution of large mammals in Protected Areas (PAs). These disturbances increase human pressure on biodiversity and species habi...Globally, human activities have a significant impact on the diversity, abundance, and distribution of large mammals in Protected Areas (PAs). These disturbances increase human pressure on biodiversity and species habitats, highlighting the need for conservation. This study aimed to assess the abundance and distribution of large mammals in different habitat types within Nimule National Park (NNP) and understand the impacts of human activities on them. Data on the abundance and distribution of large mammals and their respective habitat types were collected through line transect surveys. Human activity signs were observed and recorded along the transect lines. To estimate the impacts of human activities on the diversity, abundance, and distribution of large mammal species, as well as to identify any significant differences between them and their habitat types, the study utilized the Kruskal Wallis test, Polynomial multiple regressions, and diversity indices. The findings from the Shannon-Weiner and Simpson indices indicated that large mammal species were more diverse inside the park (H’ = 1.136;D = 0.570) compared to the buffer zone (H’ = 0.413;D = 0.171), with 85% (443 out of 510 samples) recorded within Nimule National Park. The species abundance showed a semi-balanced status (0.58). The diversity results among different habitat types revealed that large mammals were more diverse and highly distributed in both open woodlands (244) and dense woodlands (192), while riverine vegetation had the lowest diversity (8). Statistical tests demonstrated a highly significant difference at a 99% confidence interval (p-value = 0.01) between habitat types and identified species of large mammals. Additionally, the results highlighted the high abundance of Uganda kob (274), baboons (141), and warthog (57) across most habitat types, accounting for at least 75% of their distribution. The most prevalent human activities observed were cattle footprints (27%) and cattle dung (14%). Human footprints and tree cutting combined accounted for 9%, indicating the practice of livestock grazing, poaching, encroachment, and fuelwood collection by local communities. However, these activities did not appear to significantly impact the diversity, abundance, and distribution of large mammals in Nimule National Park. Therefore, it is crucial to foster shared responsibilities and engage relevant stakeholders in the management and conservation of large wildlife species. Regular community awareness programs should be implemented to cultivate a sense of ownership. Moreover, it is recommended that a comprehensive survey be conducted on the population status of all mammal species in Nimule National Park, including its surrounding Buffer Zone. Monitoring the impact of human activities on their behavior and habitats using satellite images should also be carried out at least every five to ten years.展开更多
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston...In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave.展开更多
The Lancang-Mekong River in China, Laos, Thailand, Myanmar, Cambodia, and Vietnam is the soul and heart of mainland Southeast Asia. Over 60 million people depend on the river and its tributaries for food, transportati...The Lancang-Mekong River in China, Laos, Thailand, Myanmar, Cambodia, and Vietnam is the soul and heart of mainland Southeast Asia. Over 60 million people depend on the river and its tributaries for food, transportation, water, and other necessities of life. The river supports one of the world’s most diverse fisheries, second only to Brazil’s Amazon River. Lancang-Mekong and tributaries are already heavily dammed primarily in China, Laos, Thailand, and Cambodia, with many more dams planned or under construction. Dams can worsen the impact of periodic droughts in the Lancang-Mekong basin and block the river’s “pulse effect” that spreads water and nutrients needed for fishing and farming onto the floodplains and delta. The headwaters of the Lancang are in China and its waters are considered a national resource. China regards the Lancang, Yangtze and Yellow rivers as a free resource rather than a shared resource. The primary difference between these rivers is the Lancang flows from China into and through other countries and not directly into a sea or ocean. China and Myanmar have not joined the Mekong River Commission (MRC) as full members but have been Dialogue Partners since 1996. Over the past thirty years, China’s Lancang policies and actions have reflected its national resource interests. China has actively engaged with individual transboundary countries at various levels including environmental, conservation, and economic agreements. The primary objective of this study is to assess the environmental and human impacts of all Lancang-Mekong mainstem and tributary dams and the plans by many countries for more hydropower utilizing the potential of the river as the continent’s energy lifeline. Future dams need to include fish ladders and navigation locks to reduce the environmental impacts on fish populations, natural resources, navigation, and livelihoods. Strengthening of international collaboration via the MRC or by individual or multiple country agreements to address Lancang-Mekong’s sustainable transboundary development goals is recommended. When new Lancang-Mekong and tributary dams are built within any of the transboundary watershed countries, additional communities will need to be resettled. Significant environmental and human impacts are observed. Steps will have to be taken by all the concerned countries to prevent these problems and to ensure that people’s livelihoods are restored after resettlement.展开更多
This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version ...This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version 2015 standard. To do this, the mapping of the different work areas made it possible to identify all the activities within the framework of the farm. Based on the mapping, environmental measurements made including noise level, brightness, electric and magnetic fields, total particles, PM10, PM2.5, PM1 showed the work areas with the exposure limit values exceeded. The inventories of the waste produced show eighteen (18) types of waste, 67% of which are special industrial waste (SIW), 28% are ordinary industrial waste (OIW) and 5% are inert industrial waste (IIW). The identification and assessment of environmental aspects and impacts made it possible to determine sixteen (16) positive and negative significant environmental aspects (ESAs). The positive AES must be maintained, and for the negative ones, mitigation and mitigation measures must be put in place in order to manage them effectively. This will ultimately improve environmental management in the operation of hydroelectric structures and facilities.展开更多
Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developm...Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.展开更多
Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions ...Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions are of significance for arid area forest and water management.This study measured daily sap flow(Q_(s))of a Larix principis-rupprechtii plantation in the Liupan Mountains,northwest China during the 2017-2019 growing seasons,and separated Q_(s)into daytime sap flow(Qd)and Q_(n).Meteorological conditions(reference evapotranspiration,ETref),canopy structure(leaf area index,LAI),and soil moisture(relative soil water content,RSWC)were considered as the main biophysical factors affecting Q_(n).The structural equation model and upper boundary line method determined the effects of compound and single factors on Q_(n)The daily mean Q_(n)values during the growing seasons in 2017,2018,and 2019 were 0.024,0.026,and 0.030 mm d-1,accounting for 6.2,11.2,and 10.1%of Q_(s),respectively.Q_(n)at different canopy development phases(leaf expanding,LG;leaf expanded,LD;and defoliation,DF)over three years was LD>LG>DF.Q_(n)increased with increasing ETref,whereas the ratio of Q_(n)to Q_(s)decreased.Q_(n)did not show regular variation in the three-year growing seasons under different soil moisture conditions.ETrefand LAI mainly controlled Q_(n)by affecting Qd,whereas RSWC had no significant effect on Q_(n).Q_(n)had a positive and linear relationship with LAI and a quadratic relationship with ETref.Both explained 40%of variation in Q_(n)Meteorological and canopy conditions are important factors affecting Q_(n)on the semi-humid study site.The application of the Q_(n)model coupled with the impact of ETrefand LAI furthers understanding of the impacts of climate and forest structure change on Q_(n).展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Drought is the most common of all natural disasters in Kenya, in terms of the large areas covered, populations adversely affected and socio-economic impacts. The Upper Ewaso Ng’iro Basin of Kenya is a drought-prone z...Drought is the most common of all natural disasters in Kenya, in terms of the large areas covered, populations adversely affected and socio-economic impacts. The Upper Ewaso Ng’iro Basin of Kenya is a drought-prone zone, lying on the lee slopes of both Mt. Kenya and Aberdares range. This study sought to determine opinions of communities on drought and its impacts on their livelihoods. Baseline data were collected from published reports and literature reviews augmented with information gathered through interviews with communities and key informants. Field data were collected mainly in the three counties of Laikipia, Isiolo and Meru, utilizing semi-structured questionnaire surveys. A total of 187 respondents were interviewed of which 150 were community members and 37 were policy makers. The typologies of community respondents interviewed included small-scale farmers, large commercial farmers, pastoralists, conservancies, water user associations and conservation groups. It was found that drought is a serious disaster in the Upper Ewaso Ng’iro basin, which has been escalating. Communities experienced negative impacts of drought, with the biggest problem being water scarcity, closely followed by food and fodder shortages and poor incomes from farming. Other problems include spikes in livestock theft, loss of livestock from diseases and shortage of pasture. Conflicts over water and pasture escalate during droughts and crime increases due to lack of on-farm employment opportunities. Since drought events are natural phenomena expected to happen any time, there is need to identify how to improve local capacities in drought preparedness, adaptation and resilience.展开更多
文摘Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
文摘Flood disasters as Climate change hazards are common in developing countries, particularly in communities along the river Gambia. Local communities, for instance, had their local coping strategies that enabled them to stay in their communities even amid these ordeals, and climate change disaster threats. This work strives to understand flood impacts and the local peoples’ adaptation or coping strategies along the River Gambia basin. A community-based cross-sectional research study of 422 research participants of which 294 are males (69.7%) and females 128 (30.3%), and a focus group discussion of 10 groups which comprised 5 female groups and 5 male groups respectively found that 98.6% of the households experienced floods in their community, and 70.6% experienced flood in their houses, 2.1% have impending flood information and 88.4% do not know evacuation centres. The majority of the households had some local coping strategies, but they acknowledged their insufficient effectiveness. The result also shows that the impact of floods on farmlands, roads, buildings, and livestock was greatly felt. Coping strategies such as sandbags, raised elevations, contour bonds, dikes, and buildings on highlands were all found to be common mechanisms the local people used. The study opines that floods affect communities, but the effects vary depending on individual assets.
文摘Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The existing studies on tobacco cultivation in Zimbabwe present contradictory findings on the determinants and impacts of adoption, leaving unanswered questions about the crop’s sustainability impact in the country. This article investigates the determinants of smallholder farmers’ decisions to grow tobacco and the associated impacts of adoption. Random and purposive sampling were used to select 273 household surveys, including tobacco and non-tobacco smallholder farmers, and 56 expert interviews to answer the research questions. We employed regression models alongside expert interviews and document analysis to identify the determinants influencing the decision-making process of smallholder farmers in Zimbabwe regarding tobacco cultivation. Additionally, our investigation aimed to elucidate the perceived impacts associated with the adoption of this agricultural practice. The regression analysis indicated that the farmer’s age, education level, farming experience, family size, household income, and perceived high farm profitability are significant drivers of tobacco adoption. We also discovered divergent and convergent perceptions of the critical impacts of tobacco cultivation. The study highlights the need for proactive multi-stakeholder collaboration and sustainable financial arrangements to address the negative impacts of tobacco production. As the primary stakeholder responsible for regulating and promoting agricultural activities, the Zimbabwean government should provide meaningful financial support, increase access to credit, and ensure better market facilities for alternative crops to reduce the over-dependence on tobacco.
文摘This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.
文摘Globally, human activities have a significant impact on the diversity, abundance, and distribution of large mammals in Protected Areas (PAs). These disturbances increase human pressure on biodiversity and species habitats, highlighting the need for conservation. This study aimed to assess the abundance and distribution of large mammals in different habitat types within Nimule National Park (NNP) and understand the impacts of human activities on them. Data on the abundance and distribution of large mammals and their respective habitat types were collected through line transect surveys. Human activity signs were observed and recorded along the transect lines. To estimate the impacts of human activities on the diversity, abundance, and distribution of large mammal species, as well as to identify any significant differences between them and their habitat types, the study utilized the Kruskal Wallis test, Polynomial multiple regressions, and diversity indices. The findings from the Shannon-Weiner and Simpson indices indicated that large mammal species were more diverse inside the park (H’ = 1.136;D = 0.570) compared to the buffer zone (H’ = 0.413;D = 0.171), with 85% (443 out of 510 samples) recorded within Nimule National Park. The species abundance showed a semi-balanced status (0.58). The diversity results among different habitat types revealed that large mammals were more diverse and highly distributed in both open woodlands (244) and dense woodlands (192), while riverine vegetation had the lowest diversity (8). Statistical tests demonstrated a highly significant difference at a 99% confidence interval (p-value = 0.01) between habitat types and identified species of large mammals. Additionally, the results highlighted the high abundance of Uganda kob (274), baboons (141), and warthog (57) across most habitat types, accounting for at least 75% of their distribution. The most prevalent human activities observed were cattle footprints (27%) and cattle dung (14%). Human footprints and tree cutting combined accounted for 9%, indicating the practice of livestock grazing, poaching, encroachment, and fuelwood collection by local communities. However, these activities did not appear to significantly impact the diversity, abundance, and distribution of large mammals in Nimule National Park. Therefore, it is crucial to foster shared responsibilities and engage relevant stakeholders in the management and conservation of large wildlife species. Regular community awareness programs should be implemented to cultivate a sense of ownership. Moreover, it is recommended that a comprehensive survey be conducted on the population status of all mammal species in Nimule National Park, including its surrounding Buffer Zone. Monitoring the impact of human activities on their behavior and habitats using satellite images should also be carried out at least every five to ten years.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.41972283)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2021zzts0287)the China Scholarship Council(Grant No.202206370109).
文摘In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave.
文摘The Lancang-Mekong River in China, Laos, Thailand, Myanmar, Cambodia, and Vietnam is the soul and heart of mainland Southeast Asia. Over 60 million people depend on the river and its tributaries for food, transportation, water, and other necessities of life. The river supports one of the world’s most diverse fisheries, second only to Brazil’s Amazon River. Lancang-Mekong and tributaries are already heavily dammed primarily in China, Laos, Thailand, and Cambodia, with many more dams planned or under construction. Dams can worsen the impact of periodic droughts in the Lancang-Mekong basin and block the river’s “pulse effect” that spreads water and nutrients needed for fishing and farming onto the floodplains and delta. The headwaters of the Lancang are in China and its waters are considered a national resource. China regards the Lancang, Yangtze and Yellow rivers as a free resource rather than a shared resource. The primary difference between these rivers is the Lancang flows from China into and through other countries and not directly into a sea or ocean. China and Myanmar have not joined the Mekong River Commission (MRC) as full members but have been Dialogue Partners since 1996. Over the past thirty years, China’s Lancang policies and actions have reflected its national resource interests. China has actively engaged with individual transboundary countries at various levels including environmental, conservation, and economic agreements. The primary objective of this study is to assess the environmental and human impacts of all Lancang-Mekong mainstem and tributary dams and the plans by many countries for more hydropower utilizing the potential of the river as the continent’s energy lifeline. Future dams need to include fish ladders and navigation locks to reduce the environmental impacts on fish populations, natural resources, navigation, and livelihoods. Strengthening of international collaboration via the MRC or by individual or multiple country agreements to address Lancang-Mekong’s sustainable transboundary development goals is recommended. When new Lancang-Mekong and tributary dams are built within any of the transboundary watershed countries, additional communities will need to be resettled. Significant environmental and human impacts are observed. Steps will have to be taken by all the concerned countries to prevent these problems and to ensure that people’s livelihoods are restored after resettlement.
文摘This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version 2015 standard. To do this, the mapping of the different work areas made it possible to identify all the activities within the framework of the farm. Based on the mapping, environmental measurements made including noise level, brightness, electric and magnetic fields, total particles, PM10, PM2.5, PM1 showed the work areas with the exposure limit values exceeded. The inventories of the waste produced show eighteen (18) types of waste, 67% of which are special industrial waste (SIW), 28% are ordinary industrial waste (OIW) and 5% are inert industrial waste (IIW). The identification and assessment of environmental aspects and impacts made it possible to determine sixteen (16) positive and negative significant environmental aspects (ESAs). The positive AES must be maintained, and for the negative ones, mitigation and mitigation measures must be put in place in order to manage them effectively. This will ultimately improve environmental management in the operation of hydroelectric structures and facilities.
文摘Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.
基金funded by the National Natural Science Foundation of China(41971038U20A2085+3 种基金32171559U21A2005)the Fundamental Research Funds of CAF(CAFYBB2020QB004CAFYBB2021ZW002)。
文摘Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions are of significance for arid area forest and water management.This study measured daily sap flow(Q_(s))of a Larix principis-rupprechtii plantation in the Liupan Mountains,northwest China during the 2017-2019 growing seasons,and separated Q_(s)into daytime sap flow(Qd)and Q_(n).Meteorological conditions(reference evapotranspiration,ETref),canopy structure(leaf area index,LAI),and soil moisture(relative soil water content,RSWC)were considered as the main biophysical factors affecting Q_(n).The structural equation model and upper boundary line method determined the effects of compound and single factors on Q_(n)The daily mean Q_(n)values during the growing seasons in 2017,2018,and 2019 were 0.024,0.026,and 0.030 mm d-1,accounting for 6.2,11.2,and 10.1%of Q_(s),respectively.Q_(n)at different canopy development phases(leaf expanding,LG;leaf expanded,LD;and defoliation,DF)over three years was LD>LG>DF.Q_(n)increased with increasing ETref,whereas the ratio of Q_(n)to Q_(s)decreased.Q_(n)did not show regular variation in the three-year growing seasons under different soil moisture conditions.ETrefand LAI mainly controlled Q_(n)by affecting Qd,whereas RSWC had no significant effect on Q_(n).Q_(n)had a positive and linear relationship with LAI and a quadratic relationship with ETref.Both explained 40%of variation in Q_(n)Meteorological and canopy conditions are important factors affecting Q_(n)on the semi-humid study site.The application of the Q_(n)model coupled with the impact of ETrefand LAI furthers understanding of the impacts of climate and forest structure change on Q_(n).
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
文摘Drought is the most common of all natural disasters in Kenya, in terms of the large areas covered, populations adversely affected and socio-economic impacts. The Upper Ewaso Ng’iro Basin of Kenya is a drought-prone zone, lying on the lee slopes of both Mt. Kenya and Aberdares range. This study sought to determine opinions of communities on drought and its impacts on their livelihoods. Baseline data were collected from published reports and literature reviews augmented with information gathered through interviews with communities and key informants. Field data were collected mainly in the three counties of Laikipia, Isiolo and Meru, utilizing semi-structured questionnaire surveys. A total of 187 respondents were interviewed of which 150 were community members and 37 were policy makers. The typologies of community respondents interviewed included small-scale farmers, large commercial farmers, pastoralists, conservancies, water user associations and conservation groups. It was found that drought is a serious disaster in the Upper Ewaso Ng’iro basin, which has been escalating. Communities experienced negative impacts of drought, with the biggest problem being water scarcity, closely followed by food and fodder shortages and poor incomes from farming. Other problems include spikes in livestock theft, loss of livestock from diseases and shortage of pasture. Conflicts over water and pasture escalate during droughts and crime increases due to lack of on-farm employment opportunities. Since drought events are natural phenomena expected to happen any time, there is need to identify how to improve local capacities in drought preparedness, adaptation and resilience.