When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativit...When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity.展开更多
The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagn...The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.展开更多
In a procedure for electrolytic dissolving pure copper and common brasses, the approximate electrochemical mole mass(k) of the sample was determined in accordance with the brand of the sample, a stitable electrolyte w...In a procedure for electrolytic dissolving pure copper and common brasses, the approximate electrochemical mole mass(k) of the sample was determined in accordance with the brand of the sample, a stitable electrolyte was selected to make the current efficiency equal to 100%, and then the dissolved mass of samples was calculated according to Faraday's law(m=klt).Three representative samples were sampled by the electrolytic dissolution method and the calculated dissolved amounts were equal to the values by weighing the anode.The cxperimental results of zinc and copper in the anode liquor are in agreement with certified values.展开更多
The origin for one of the fundamental laws of electromagnetism, namely Faraday’s law is explained for the first time on the basis of the presence of strings in the form of a compact liquid. The rate of change of the ...The origin for one of the fundamental laws of electromagnetism, namely Faraday’s law is explained for the first time on the basis of the presence of strings in the form of a compact liquid. The rate of change of the magnetic field produces a pressure gradient in the medium giving rise to the fluid flow. According to fluid dynamics, the stress and the gradient of strain are originated in the space which creates vibrations in the system and is related with the electric field. The details of the mechanism which produces a circular motion of the electric field, XE, are also addressed.展开更多
A new technique of designing a dual-band frequency selective surface with large band separation is presented.This technique is based on a delicately designed topology of L-and Ku-band microwave filters.The two band-pa...A new technique of designing a dual-band frequency selective surface with large band separation is presented.This technique is based on a delicately designed topology of L-and Ku-band microwave filters.The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface,respectively.A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings.Based on this technique,a dual-band frequency selective surface with large band separation is designed,which possesses large band separation,high selectivity,and stable performance under various incident angles and different polarizations.展开更多
We have investigated the electron transport properties of a N24B24 molecule coupled to two metallic contacts with a combination of GW approximation and the non-equilibrium Green's- function technique. The calculation...We have investigated the electron transport properties of a N24B24 molecule coupled to two metallic contacts with a combination of GW approximation and the non-equilibrium Green's- function technique. The calculations indicate that the four and three resonant tunneling peaks are seen for the density of states (DOS) curves in the cases of single and multiple atomic contacts, respectively. The off state and negative differential resistance (NDR) effect are observed in the I-V characteristics of the N24B24 molecule. The NDR behavior is also observed in voltages of about 354.5, 354, 354.6, and 354.3 V for one, four, six, and eight atomic contacts. Also, the I-V characteristics of N24B24 are in off state at low voltages that is independent of the contact types. The current contact types and indicate that N24B24 molecule curves against the gate voltage depend on behaves as a semiconductor.展开更多
Patients undergoing Magnetic Resonance Imaging (MRI) are exposed to strong, non-uniform static magnetic fields outside of the central imaging region, in which the movement of the body may induce electric currents in t...Patients undergoing Magnetic Resonance Imaging (MRI) are exposed to strong, non-uniform static magnetic fields outside of the central imaging region, in which the movement of the body may induce electric currents in tissues which could possibly be harmful. The purpose of this study was to re-evaluate existing clinical protocols by determining the induced electromagnetic (EM) fields in MRI spine examinations. The study covered 120 MRI spine examinations at the MRI Unit of a hospital in Accra, Ghana. A numerical model based on Faraday’s equation was developed using the finite difference method (FDM) and MATLAB software to compute, first, a test simulation of induced EM field intensities and then actual measurements of induced fields on the spine. The simulation results were peak induced electric field, 0.39 V/m and current density, 0.039 A/m2. Patient results were;calculated maximum velocity, 0.29 m/s;peak induced electric field strength, 0.44 V/m, and current density, 0.043 A/m2. The levels of induced EM-fields were such that they would not pose any potential health hazards to the patients as these values were well below the recommended guidance levels set by the Directive IEC 60601-2-33 of the European Parliament.展开更多
An accelerating charged particle exerts a force upon itself. If we model the particle as a spherical shell of radius R, and calculate the force of one piece of this shell on another and eventually integrate over the w...An accelerating charged particle exerts a force upon itself. If we model the particle as a spherical shell of radius R, and calculate the force of one piece of this shell on another and eventually integrate over the whole particle, there will be a net force on the particle due to the breakdown of Newton’s third law. This symmetry breaking mechanism relies on the finite size of the particle;thus, as Feynman has stated, conceptually this mechanism doesn’t make good sense for point particles. Nonetheless, in the point particle limit, two terms survive in the self-force series: R0 and R-1 terms. The R0 term can alternatively be attributed to the well-known radiation reaction but the origin of R-1 term is not clear. In this study, we will show that this new term can be accounted for by an inductive mechanism in which the changing magnetic field induces an inductive force on the particle. Using this inductive mechanism, we derive R-1 term in an extremely easy way.展开更多
文摘When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity.
文摘The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.
文摘In a procedure for electrolytic dissolving pure copper and common brasses, the approximate electrochemical mole mass(k) of the sample was determined in accordance with the brand of the sample, a stitable electrolyte was selected to make the current efficiency equal to 100%, and then the dissolved mass of samples was calculated according to Faraday's law(m=klt).Three representative samples were sampled by the electrolytic dissolution method and the calculated dissolved amounts were equal to the values by weighing the anode.The cxperimental results of zinc and copper in the anode liquor are in agreement with certified values.
文摘The origin for one of the fundamental laws of electromagnetism, namely Faraday’s law is explained for the first time on the basis of the presence of strings in the form of a compact liquid. The rate of change of the magnetic field produces a pressure gradient in the medium giving rise to the fluid flow. According to fluid dynamics, the stress and the gradient of strain are originated in the space which creates vibrations in the system and is related with the electric field. The details of the mechanism which produces a circular motion of the electric field, XE, are also addressed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60871027,60901029 and 61071058)the National Basic Research Program of China(Grant No.2009CB623306)+2 种基金the Research Fund of Shaanxi Key Laboratory of Electronic Information System Integration,China(Grant No.201114Y11)the Postdoctoral Science Foundation of China(Grant No.20100481327)the Natural Science Foundation of Shaanxi Province,China(Grant No.2011JQ8031)
文摘A new technique of designing a dual-band frequency selective surface with large band separation is presented.This technique is based on a delicately designed topology of L-and Ku-band microwave filters.The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface,respectively.A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings.Based on this technique,a dual-band frequency selective surface with large band separation is designed,which possesses large band separation,high selectivity,and stable performance under various incident angles and different polarizations.
文摘We have investigated the electron transport properties of a N24B24 molecule coupled to two metallic contacts with a combination of GW approximation and the non-equilibrium Green's- function technique. The calculations indicate that the four and three resonant tunneling peaks are seen for the density of states (DOS) curves in the cases of single and multiple atomic contacts, respectively. The off state and negative differential resistance (NDR) effect are observed in the I-V characteristics of the N24B24 molecule. The NDR behavior is also observed in voltages of about 354.5, 354, 354.6, and 354.3 V for one, four, six, and eight atomic contacts. Also, the I-V characteristics of N24B24 are in off state at low voltages that is independent of the contact types. The current contact types and indicate that N24B24 molecule curves against the gate voltage depend on behaves as a semiconductor.
文摘Patients undergoing Magnetic Resonance Imaging (MRI) are exposed to strong, non-uniform static magnetic fields outside of the central imaging region, in which the movement of the body may induce electric currents in tissues which could possibly be harmful. The purpose of this study was to re-evaluate existing clinical protocols by determining the induced electromagnetic (EM) fields in MRI spine examinations. The study covered 120 MRI spine examinations at the MRI Unit of a hospital in Accra, Ghana. A numerical model based on Faraday’s equation was developed using the finite difference method (FDM) and MATLAB software to compute, first, a test simulation of induced EM field intensities and then actual measurements of induced fields on the spine. The simulation results were peak induced electric field, 0.39 V/m and current density, 0.039 A/m2. Patient results were;calculated maximum velocity, 0.29 m/s;peak induced electric field strength, 0.44 V/m, and current density, 0.043 A/m2. The levels of induced EM-fields were such that they would not pose any potential health hazards to the patients as these values were well below the recommended guidance levels set by the Directive IEC 60601-2-33 of the European Parliament.
文摘An accelerating charged particle exerts a force upon itself. If we model the particle as a spherical shell of radius R, and calculate the force of one piece of this shell on another and eventually integrate over the whole particle, there will be a net force on the particle due to the breakdown of Newton’s third law. This symmetry breaking mechanism relies on the finite size of the particle;thus, as Feynman has stated, conceptually this mechanism doesn’t make good sense for point particles. Nonetheless, in the point particle limit, two terms survive in the self-force series: R0 and R-1 terms. The R0 term can alternatively be attributed to the well-known radiation reaction but the origin of R-1 term is not clear. In this study, we will show that this new term can be accounted for by an inductive mechanism in which the changing magnetic field induces an inductive force on the particle. Using this inductive mechanism, we derive R-1 term in an extremely easy way.