Artemisinin is a novel effective antimalarial drug extracted from the medicinal plant Artemisia annua L. Owing to the tight market and low yield of artemisinin, there is great interest in enhancing the production of a...Artemisinin is a novel effective antimalarial drug extracted from the medicinal plant Artemisia annua L. Owing to the tight market and low yield of artemisinin, there is great interest in enhancing the production of artemisinin. In the present study, farnesyi diphosphate synthase (FPS) was overexpressed in high-yield A. annua to Increase the artemisinin content. The FPS activity in transgenic A. ennue was twoto threefold greater than that In non-transgenic A. annua. The highest artemisinin content in transgenic A. annua was approximately 0.9% (dry weight), which was 34.4% higher than that in non-transgenic A. annua. The results demonstrate the regulatory role of FPS in artemisinin biosynthesis.展开更多
Background Genetic factors are important in the pathogenesis of osteoporosis,but less is known about the genetic determinants of osteoporosis treatment.We aimed to explore the association between the gene polymorphism...Background Genetic factors are important in the pathogenesis of osteoporosis,but less is known about the genetic determinants of osteoporosis treatment.We aimed to explore the association between the gene polymorphisms of key enzyme farnesyl diphosphate synthase (FDPS) in mevalonate signaling pathway of osteoclast and response to alendronate therapy in osteoporotic postmenopausal women in China.Methods The study group comprised 639 postmenopausal women aged (62.2±7.0) years with osteoporosis or osteopenia who had been randomly assigned to low dose group (70 mg/2w) or standard dose group (70 mg/w) of alendronate in this 1-year study.We identified allelic variant of the FDPS gene using the polymerase chain reaction and restriction enzyme Faul.Before and after treatment,serum levels of calcium,phosphate,alkaline phosphatase (ALP),cross linked C-telopeptide of type Ⅰ collagen (β-CTX) were detected.Bone mineral density (BMD) at lumbar spine and proximal femur was measured.The association was analyzed between the polymorphisms of FDPS gene and the changes of BMD,bone turnover biomarkers after the treatment.Results The FDPS rs2297480 polymorphisms were associated with baseline BMD at femoral neck,and patients with CC genotype had significantly higher baseline femoral neck BMD ((733.6±84.1) mg/cm2) than those with AC genotypes ((703.0±86.9) mg/cm2) and AA genotypes ((649.8±62.4) mg/cm2) (P 〈0.01).No significant difference in BMD at lumbar spine was observed among different genotypes of FDPS.The percentage change of serum ALP level was significantly lower in patients with CC genotype (-22.9%) than that in those with AC genotype (-24.1%) and AA genotype (-29.8%) of FDPS after 12 months of alendronate treatment (P 〈0.05).Neither percentage change of BMD nor β-CTX level after alendronate treatment had association with FDPS genotype.Conclusions FDPS gene was probably a candidate gene to predict femoral neck BMD at baseline.FDPS gene alleles could predict change percentage of ALP after treatment of alendronate,but possibly had no significant relationship with the responsiveness of BMD to alendronate therapy.展开更多
Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting ...Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting step In terpenold biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl dlphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptlde with a calculated molecular weight of 40.3 kDa and a theoretical pl of 5.07. Biolnformatlc analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetlc analysis showed that farnesyl dlphosphate synthases can be divided Into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homologybased structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature Is the arrangement of 13 core helices around a large central cavity In which the catalytic reaction takes place. Our blolnformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPSgene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, Including the needles, stems and roots of T. media. Subsequently, functional complementatlon with TmFPS1 in a FPS-deflclent mutant yeast demonstrated that TmFPS1 did encode farnesyl dlphosphate synthase, which rescued the yeast mutant. This study will be helpful In future Investigations aiming at understanding the detailed role of FPS In terpenold biosynthesis flux control at the molecular genetic level.展开更多
A cDNA(af1) encoding farnesyl pyrophosphate synthase AaFPS1 (FPS, EC2.5.1.1/EC2.5.1.10) from a high yield Artemisia annua strain 025 has been cloned from its cDNA library. Sequence analysis showed that the cDNA en-cod...A cDNA(af1) encoding farnesyl pyrophosphate synthase AaFPS1 (FPS, EC2.5.1.1/EC2.5.1.10) from a high yield Artemisia annua strain 025 has been cloned from its cDNA library. Sequence analysis showed that the cDNA en-coded a protein of 343 amino acid (aa) residues with mo-lecular weight of 39 kD. Deduced aa sequence of the cDNA was similar to FPS from other plants, yeast and mammals, containing 5 conserved domains found in both prenyl trans-ferase and polyprenyl synthase. The expression of the cDNA in Escherichia coli showed measurable specific activity of FPS in vitro. The enzyme was purified by ion exchange chromatography and its kinetics was measured. These re-sults would further promote the molecular regulation of ar-temisinin biosynthesis.展开更多
基金the National Natural Science Foundation of China (30171142).
文摘Artemisinin is a novel effective antimalarial drug extracted from the medicinal plant Artemisia annua L. Owing to the tight market and low yield of artemisinin, there is great interest in enhancing the production of artemisinin. In the present study, farnesyi diphosphate synthase (FPS) was overexpressed in high-yield A. annua to Increase the artemisinin content. The FPS activity in transgenic A. ennue was twoto threefold greater than that In non-transgenic A. annua. The highest artemisinin content in transgenic A. annua was approximately 0.9% (dry weight), which was 34.4% higher than that in non-transgenic A. annua. The results demonstrate the regulatory role of FPS in artemisinin biosynthesis.
基金grants from the National Natural Science Foundation of China,National Key Program of Clinical Science
文摘Background Genetic factors are important in the pathogenesis of osteoporosis,but less is known about the genetic determinants of osteoporosis treatment.We aimed to explore the association between the gene polymorphisms of key enzyme farnesyl diphosphate synthase (FDPS) in mevalonate signaling pathway of osteoclast and response to alendronate therapy in osteoporotic postmenopausal women in China.Methods The study group comprised 639 postmenopausal women aged (62.2±7.0) years with osteoporosis or osteopenia who had been randomly assigned to low dose group (70 mg/2w) or standard dose group (70 mg/w) of alendronate in this 1-year study.We identified allelic variant of the FDPS gene using the polymerase chain reaction and restriction enzyme Faul.Before and after treatment,serum levels of calcium,phosphate,alkaline phosphatase (ALP),cross linked C-telopeptide of type Ⅰ collagen (β-CTX) were detected.Bone mineral density (BMD) at lumbar spine and proximal femur was measured.The association was analyzed between the polymorphisms of FDPS gene and the changes of BMD,bone turnover biomarkers after the treatment.Results The FDPS rs2297480 polymorphisms were associated with baseline BMD at femoral neck,and patients with CC genotype had significantly higher baseline femoral neck BMD ((733.6±84.1) mg/cm2) than those with AC genotypes ((703.0±86.9) mg/cm2) and AA genotypes ((649.8±62.4) mg/cm2) (P 〈0.01).No significant difference in BMD at lumbar spine was observed among different genotypes of FDPS.The percentage change of serum ALP level was significantly lower in patients with CC genotype (-22.9%) than that in those with AC genotype (-24.1%) and AA genotype (-29.8%) of FDPS after 12 months of alendronate treatment (P 〈0.05).Neither percentage change of BMD nor β-CTX level after alendronate treatment had association with FDPS genotype.Conclusions FDPS gene was probably a candidate gene to predict femoral neck BMD at baseline.FDPS gene alleles could predict change percentage of ALP after treatment of alendronate,but possibly had no significant relationship with the responsiveness of BMD to alendronate therapy.
基金Supported by the Hi-Tech Research and Development(863) Program of China,and the National Natural Science Foundation of China(30500303)
文摘Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting step In terpenold biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl dlphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptlde with a calculated molecular weight of 40.3 kDa and a theoretical pl of 5.07. Biolnformatlc analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetlc analysis showed that farnesyl dlphosphate synthases can be divided Into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homologybased structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature Is the arrangement of 13 core helices around a large central cavity In which the catalytic reaction takes place. Our blolnformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPSgene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, Including the needles, stems and roots of T. media. Subsequently, functional complementatlon with TmFPS1 in a FPS-deflclent mutant yeast demonstrated that TmFPS1 did encode farnesyl dlphosphate synthase, which rescued the yeast mutant. This study will be helpful In future Investigations aiming at understanding the detailed role of FPS In terpenold biosynthesis flux control at the molecular genetic level.
基金This work was supported by the National Natural Science Fundation of China (Grant No. 30171142).
文摘A cDNA(af1) encoding farnesyl pyrophosphate synthase AaFPS1 (FPS, EC2.5.1.1/EC2.5.1.10) from a high yield Artemisia annua strain 025 has been cloned from its cDNA library. Sequence analysis showed that the cDNA en-coded a protein of 343 amino acid (aa) residues with mo-lecular weight of 39 kD. Deduced aa sequence of the cDNA was similar to FPS from other plants, yeast and mammals, containing 5 conserved domains found in both prenyl trans-ferase and polyprenyl synthase. The expression of the cDNA in Escherichia coli showed measurable specific activity of FPS in vitro. The enzyme was purified by ion exchange chromatography and its kinetics was measured. These re-sults would further promote the molecular regulation of ar-temisinin biosynthesis.