The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. Th...A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.展开更多
目的推动印刷行业朝更高效的方向迈进,提高印刷设备的易操作性和视觉识别性。方法将Kano和FAST(Function Analysis System Technique)模型引入瓦楞纸激光打印设备设计的前期应用需求分析中,通过问卷的方法获取用户的基本要求,并划分为...目的推动印刷行业朝更高效的方向迈进,提高印刷设备的易操作性和视觉识别性。方法将Kano和FAST(Function Analysis System Technique)模型引入瓦楞纸激光打印设备设计的前期应用需求分析中,通过问卷的方法获取用户的基本要求,并划分为几个子类型,进而建立Kano的二维功能属性模型。采用FAST法建立功能树,辅助使用Kano模型,从而更精准地分析用户需求,并更好地根据其需求进行优化设计。结果综合运用设计原理,针对性地挖掘瓦楞纸激光印刷设备在造型识别性、操作易用性、生产安全性上存在的问题,进而输出更优解。结论该设计方法的引入有助于为同类型的印刷设备设计提供参考,并引起更多相关厂家的重视,推动印刷行业向更积极的方向发展。展开更多
For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ...For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.展开更多
This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of ...This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.展开更多
In this paper, H∞ optimal model reduction for singular fast subsystems will be inves-tigated. First, error system is established to measure the error magnitude between the original andreduced systems, and it is demon...In this paper, H∞ optimal model reduction for singular fast subsystems will be inves-tigated. First, error system is established to measure the error magnitude between the original andreduced systems, and it is demonstrated that the new feature for model reduction of singular systemsis to make H∞ norm of the error system finite and minimal. The necessary and su?cient conditionis derived for the existence of the H∞ suboptimal model reduction problem. Next, we give an exactand practicable algorithm to get the parameters of the reduced subsystems by applying the matrixtheory. Meanwhile, the reduced system may be also impulsive. The advantages of the proposedalgorithm are that it is more ?exible in a straight-forward way without much extra computation, andthe order of the reduced systems is as minimal as possible. Finally, one illustrative example is givento illustrate the e?ectiveness of the proposed model reduction approach.展开更多
In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the stati...In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts.展开更多
To solve the problems associated with low resolution and high computational effort infinite time,this paper proposes a fast forward modeling method for muon energy loss transmission tomography based on a model voxeliza...To solve the problems associated with low resolution and high computational effort infinite time,this paper proposes a fast forward modeling method for muon energy loss transmission tomography based on a model voxelization energy loss projection algorithm.First,the energy loss equation for muon transmission tomography is derived from the Bethe–Bloch formula,and the imaging region is then dissected into several units using the model voxelization method.Thereafter,the three-dimensional(3-D)imaging model is discretized into parallel and equally spaced two-dimensional(2-D)slices using the model layering method to realize a dimensional reduction of the 3-D volume data and accelerate the forward calculation speed.Subsequently,the muon energy loss transmission tomography equation is discretized using the ray energy loss projection method to establish a set of energy loss equations for the muon penetration voxel model.Finally,the muon energy loss values at the outgoing point are obtained by solving the projection coefficient matrix of the ray length-weighted model,achieving a significant reduction in the number of muons and improving the computational efficiency.A comparison of our results with the simulation results based on the Monte Carlo method verifies the accuracy and effectiveness of the algorithm proposed in this paper.The metallic mineral identification tests show that the proposed algorithm can quickly identify high-density metallic minerals.The muon energy loss response can accurately identify the boundary of the anomalies and their spatial distribution characteristics.展开更多
To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas we...To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas were given, and then the fast Fourier transform (FFT) algorithm was used to get the approximate values of option prices. Finally, a numerical example was given to demonstrate the calculate steps to the option price by FFT.展开更多
Fluidized bed combustion behavior of coal and biomass is of practical interest due to its significant involvement in heating systems and power plant operations. This combustion behavior has been studied by many experi...Fluidized bed combustion behavior of coal and biomass is of practical interest due to its significant involvement in heating systems and power plant operations. This combustion behavior has been studied by many experimental techniques along with different kinetic models. In this study, SO2 emissions have been studied out in a pilot scale test facility of Circulating Fluidized Bed combustor (70 KW) under fast fluidized bed conditions burning coal with Pakistani wheat straw. One dimensional Mathematical model is being developed to predict the SO2 emissions under different operating conditions like bed temperature, Ca/S molar ratio, solids circulation rate, excess air ratio and secondary to primary air ratio. These parameters are varied to validate the model and encouraging correlation is found between the experimental values and model predictions.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金Acknowledgements. This work was jointly supported by the Chinese Academy of Sciences through the International Partnership Creative Group entitled "The Climate System Model Development and Application Studies", the Major State Basic Research Development Program of China (973 Program) under Grant No. 2005CB321703, and the National Natural Science Foundation of China (Grant Nos. 40675050, 40221503, 40625014). The long-term integration of the coupled model was finished on the Lenovo DeepComp 6800 supercomputer at the Supercomputing Center of the Chinese Academy of Sciences, and the IBM SP690 at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The authors appreciate the contribution of Drs. R. C. Yu, Y. Q. Yu, H. L. Liu, W. P. Zheng, J. Li, X. G Xin, and Mrs. H. Wan, H. M. Li in the model development and validations.
文摘A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.
文摘目的推动印刷行业朝更高效的方向迈进,提高印刷设备的易操作性和视觉识别性。方法将Kano和FAST(Function Analysis System Technique)模型引入瓦楞纸激光打印设备设计的前期应用需求分析中,通过问卷的方法获取用户的基本要求,并划分为几个子类型,进而建立Kano的二维功能属性模型。采用FAST法建立功能树,辅助使用Kano模型,从而更精准地分析用户需求,并更好地根据其需求进行优化设计。结果综合运用设计原理,针对性地挖掘瓦楞纸激光印刷设备在造型识别性、操作易用性、生产安全性上存在的问题,进而输出更优解。结论该设计方法的引入有助于为同类型的印刷设备设计提供参考,并引起更多相关厂家的重视,推动印刷行业向更积极的方向发展。
基金This work was supported by the National Natural Science Foundation(NNSF)of China under grant no.61673386,62073335the China Postdoctoral Science Foundation(2017M613201,2019T120944).
文摘For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.
基金Projects(51135009)supported by the National Natural Science Foundation of China
文摘This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
文摘In this paper, H∞ optimal model reduction for singular fast subsystems will be inves-tigated. First, error system is established to measure the error magnitude between the original andreduced systems, and it is demonstrated that the new feature for model reduction of singular systemsis to make H∞ norm of the error system finite and minimal. The necessary and su?cient conditionis derived for the existence of the H∞ suboptimal model reduction problem. Next, we give an exactand practicable algorithm to get the parameters of the reduced subsystems by applying the matrixtheory. Meanwhile, the reduced system may be also impulsive. The advantages of the proposedalgorithm are that it is more ?exible in a straight-forward way without much extra computation, andthe order of the reduced systems is as minimal as possible. Finally, one illustrative example is givento illustrate the e?ectiveness of the proposed model reduction approach.
基金supported by a General Financial Grant from the China Postdoctoral Science Foundation(No.2017M623313XB)Key Laboratory of Neutron Physics,CAEP(No.2018BA02)
文摘In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts.
基金supported by the National Key Research and Development Project of China (2016YFC0303104)the National Natural Science Foundation of China(41304090)。
文摘To solve the problems associated with low resolution and high computational effort infinite time,this paper proposes a fast forward modeling method for muon energy loss transmission tomography based on a model voxelization energy loss projection algorithm.First,the energy loss equation for muon transmission tomography is derived from the Bethe–Bloch formula,and the imaging region is then dissected into several units using the model voxelization method.Thereafter,the three-dimensional(3-D)imaging model is discretized into parallel and equally spaced two-dimensional(2-D)slices using the model layering method to realize a dimensional reduction of the 3-D volume data and accelerate the forward calculation speed.Subsequently,the muon energy loss transmission tomography equation is discretized using the ray energy loss projection method to establish a set of energy loss equations for the muon penetration voxel model.Finally,the muon energy loss values at the outgoing point are obtained by solving the projection coefficient matrix of the ray length-weighted model,achieving a significant reduction in the number of muons and improving the computational efficiency.A comparison of our results with the simulation results based on the Monte Carlo method verifies the accuracy and effectiveness of the algorithm proposed in this paper.The metallic mineral identification tests show that the proposed algorithm can quickly identify high-density metallic minerals.The muon energy loss response can accurately identify the boundary of the anomalies and their spatial distribution characteristics.
基金Foundation item The National Natural Science Foundationof China (No10571065)
文摘To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas were given, and then the fast Fourier transform (FFT) algorithm was used to get the approximate values of option prices. Finally, a numerical example was given to demonstrate the calculate steps to the option price by FFT.
文摘Fluidized bed combustion behavior of coal and biomass is of practical interest due to its significant involvement in heating systems and power plant operations. This combustion behavior has been studied by many experimental techniques along with different kinetic models. In this study, SO2 emissions have been studied out in a pilot scale test facility of Circulating Fluidized Bed combustor (70 KW) under fast fluidized bed conditions burning coal with Pakistani wheat straw. One dimensional Mathematical model is being developed to predict the SO2 emissions under different operating conditions like bed temperature, Ca/S molar ratio, solids circulation rate, excess air ratio and secondary to primary air ratio. These parameters are varied to validate the model and encouraging correlation is found between the experimental values and model predictions.