Combining the advantages of partial matched filter(PMF) and fast Fourier transform(FFT),an improved fast acquisition method for GPS C/A code is proposed.According to PMF-FFT acquisition architecture,the greater th...Combining the advantages of partial matched filter(PMF) and fast Fourier transform(FFT),an improved fast acquisition method for GPS C/A code is proposed.According to PMF-FFT acquisition architecture,the greater the number of PMF will bring out the more slowly amplitude decreasing of the amplitude-frequency response,the smaller scale of the corresponding PMF,and the larger computation of the FFT.In order to compensate the frequency spectrum attenuation caused by spectrum leakage and fence effect,adding window function to PMF-FFT is presented.Through comparing the influences to the acquisition performance based on rectangular,Hamming,Blackman and Rife-Vincent(Ⅲ) window functions,an improved Rife-Vincent Ⅲ windowing algorithm is recommended for the fast acquisition based on PMF-FFT.展开更多
Accurate frequency estimation in a wideband digital receiver using the FFT algorithm encounters challenges, such as spectral leakage resulting from the FFT’s assumption of signal periodicity. High-resolution FFTs pos...Accurate frequency estimation in a wideband digital receiver using the FFT algorithm encounters challenges, such as spectral leakage resulting from the FFT’s assumption of signal periodicity. High-resolution FFTs pose computational demands, and estimating non-integer multiples of frequency resolution proves exceptionally challenging. This paper introduces two novel methods for enhanced frequency precision: polynomial interpolation and array indexing, comparing their results with super-resolution and scalloping loss. Simulation results demonstrate the effectiveness of the proposed methods in contemporary radar systems, with array indexing providing the best frequency estimation despite utilizing maximum hardware resources. The paper demonstrates a trade-off between accurate frequency estimation and hardware resources when comparing polynomial interpolation and array indexing.展开更多
为了解决全球定位系统(Global position system,GPS)微弱信号的快速捕获问题,在基于快速傅里叶变换(Fourier transform,FFT)捕获方法的基础上,改进过去的相干积分或非相干积分,提出了一种新的改进微弱信号捕获算法,采用批处理方式提高...为了解决全球定位系统(Global position system,GPS)微弱信号的快速捕获问题,在基于快速傅里叶变换(Fourier transform,FFT)捕获方法的基础上,改进过去的相干积分或非相干积分,提出了一种新的改进微弱信号捕获算法,采用批处理方式提高捕获增益,并运用多普勒补偿,提高信号累加时间容限,进一步提高信号捕获灵敏度。仿真测试表明,该方法较传统的FFT算法,提高了捕获概率,最后在FPGA上具体实现了该方案。展开更多
基金Supported by the Ministerial Level Foundation(B222006060)
文摘Combining the advantages of partial matched filter(PMF) and fast Fourier transform(FFT),an improved fast acquisition method for GPS C/A code is proposed.According to PMF-FFT acquisition architecture,the greater the number of PMF will bring out the more slowly amplitude decreasing of the amplitude-frequency response,the smaller scale of the corresponding PMF,and the larger computation of the FFT.In order to compensate the frequency spectrum attenuation caused by spectrum leakage and fence effect,adding window function to PMF-FFT is presented.Through comparing the influences to the acquisition performance based on rectangular,Hamming,Blackman and Rife-Vincent(Ⅲ) window functions,an improved Rife-Vincent Ⅲ windowing algorithm is recommended for the fast acquisition based on PMF-FFT.
文摘Accurate frequency estimation in a wideband digital receiver using the FFT algorithm encounters challenges, such as spectral leakage resulting from the FFT’s assumption of signal periodicity. High-resolution FFTs pose computational demands, and estimating non-integer multiples of frequency resolution proves exceptionally challenging. This paper introduces two novel methods for enhanced frequency precision: polynomial interpolation and array indexing, comparing their results with super-resolution and scalloping loss. Simulation results demonstrate the effectiveness of the proposed methods in contemporary radar systems, with array indexing providing the best frequency estimation despite utilizing maximum hardware resources. The paper demonstrates a trade-off between accurate frequency estimation and hardware resources when comparing polynomial interpolation and array indexing.
文摘为了解决全球定位系统(Global position system,GPS)微弱信号的快速捕获问题,在基于快速傅里叶变换(Fourier transform,FFT)捕获方法的基础上,改进过去的相干积分或非相干积分,提出了一种新的改进微弱信号捕获算法,采用批处理方式提高捕获增益,并运用多普勒补偿,提高信号累加时间容限,进一步提高信号捕获灵敏度。仿真测试表明,该方法较传统的FFT算法,提高了捕获概率,最后在FPGA上具体实现了该方案。